终身会员
搜索
    上传资料 赚现金

    2021-2022学年基础强化沪科版九年级数学下册第24章圆课时练习试题(含详解)

    立即下载
    加入资料篮
    2021-2022学年基础强化沪科版九年级数学下册第24章圆课时练习试题(含详解)第1页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆课时练习试题(含详解)第2页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆课时练习试题(含详解)第3页
    还剩23页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试同步练习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试同步练习题,共26页。


    沪科版九年级数学下册第24章圆课时练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,在Rt△ABC中,,以边上一点为圆心作,恰与边分别相切于点,则阴影部分的面积为(   

    A. B. C. D.

    2、计算半径为1,圆心角为的扇形面积为(   

    A. B. C. D.

    3、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12

    4、如图,ABCD是⊙O的弦,且,若,则的度数为(   

    A.30° B.40° C.45° D.60°

    5、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△ABC′的位置,使CCAB,则旋转角的度数为(   

    A.64° B.52° C.42° D.36°

    6、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是(     

    A.60 B.90 C.120 D.180

    7、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是(   

    A.50° B.60° C.40° D.30°

    8、如图,在中,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于(   

    A. B. C. D.

    9、在下列图形中,既是中心对称图形又是轴对称图形的是(  

    A.  B. 

    C.  D.

    10、如图,点ABC上,,则的度数是(   

    A.100° B.50° C.40° D.25°

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.

    2、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.

    3、如图,过⊙O外一点P,作射线PAPB分别切⊙O于点AB,点C在劣弧AB上,过点C作⊙O的切线分别与PAPB交于点DE.则______度.

    4、如图,在中,绕点B顺时针方向旋转45°得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为______.(结果保留

    5、如图,在平行四边形中,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,AB为⊙O的切线,B为切点,过点BBCOA,垂足为点E,交⊙O于点C,连接CO并延长COAB的延长线交于点D,连接AC

    (1)求证:AC为⊙O的切线;

    (2)若⊙O半径为2,OD=4.求线段AD的长.

    2、如图,在△ABC中,∠ACB=90°,AC=BCDAB边上一点(与AB不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DEBE

    (1)求证:△ACD≌△BCE

    (2)若BE=5,DE=13,求AB的长

    3、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.

    (1)请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;

    (2)把图③补成只是中心对称图形,并把中心标上字母P

    4、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PBAB,∠PBA=∠C

    (1)求证:PB是⊙O的切线;

    (2)连接OP,若OPBC,且OP=8,⊙O的半径为3,求BC的长.

    5、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    连结OC,根据切线长性质DC=ACOC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可.

    【详解】

    解:连结OC

    ∵以边上一点为圆心作,恰与边分别相切于点A,

    DC=ACOC平分∠ACD

    ∴∠ACD=90°-∠B=60°,

    ∴∠OCD=∠OCA==30°,

    在Rt△ABC中,AC=ABtanB=3×

    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=

    OD=OA=1,DC=AC=

    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,

    S阴影=

    故选择A.

    【点睛】

    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.

    2、B

    【分析】

    直接根据扇形的面积公式计算即可.

    【详解】

    故选:B.

    【点睛】

    本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.

    3、D

    【分析】

    连接OBOC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.

    【详解】

    解:连接OBOC

    ∵∠BAC=30°,

    ∴∠BOC=60°.

    OB=OCBC=6,

    ∴△OBC是等边三角形,

    OB=BC=6.

    ∴⊙O的直径等于12.

    故选:D.

    【点睛】

    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.

    4、B

    【分析】

    由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.

    【详解】

    解:∵

    故选:B.

    【点睛】

    题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.

    5、B

    【分析】

    先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠ACC=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.

    【详解】

    解:∵CC′∥AB

    ∴∠ACC′=∠CAB=64°

    ∵△ABC在平面内绕点A旋转到△ABC′的位置,

    ∴∠CAC′等于旋转角,AC=AC′,

    ∴∠ACC′=∠ACC=64°,

    ∴∠CAC′=180°-∠ACC′-∠ACC=180°-2×64°=52°,

    ∴旋转角为52°.

    故选:B

    【点睛】

    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.

    6、C

    【分析】

    根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.

    【详解】

    解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.

    故选C.

    【点睛】

    本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.

    7、A

    【分析】

    根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.

    【详解】

    解: 将△OAB绕点O逆时针旋转80°得到△OCD

    A的度数为110°,∠D的度数为40°,

    故选A

    【点睛】

    本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.

    8、D

    【分析】

    连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.

    【详解】

    解:连接CD,如图所示:

    ∵点DAB的中点,

    在Rt△ACB中,由勾股定理可得

    故选D.

    【点睛】

    本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.

    9、B

    【分析】

    根据中心对称图形与轴对称图形的定义解答即可.

    【详解】

    解:A.是轴对称图形,不是中心对称图形,不符合题意;

    B既是中心对称图形又是轴对称图形,符合题意;

    C. 是轴对称图形,不是中心对称图形,不符合题意;

    D. 既不是中心对称图形,也不是轴对称图形,不符合题意.

    故选B.

    【点睛】

    本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.

    10、C

    【分析】

    先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.

    【详解】

    ∵∠ACB=50°,

    ∴∠AOB=100°,

    OA=OB

    ∴∠OAB=∠OBA= 40°,

    故选:C

    【点睛】

    本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

    二、填空题

    1、

    【分析】

    根据旋转找出规律后再确定坐标.

    【详解】

    ∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,

    ∴每6次翻转为一个循环组循环,

    ∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,

    ∴翻转前进的距离为:

    如图,过点BBGxG

    则∠BAG=60°,

    ∴点B的坐标为

    故答案为:

    【点睛】

    题考查旋转的性质与正多边形,由题意找出规律是解题的关键.

    2、18.84

    【分析】

    先根据弧长公式求得πr,然后再运用圆的周长公式解答即可.

    【详解】

    解:设圆弧所在圆的半径为厘米,

    解得

    则它所在圆的周长为(厘米),

    故答案为:

    【点睛】

    本题主要考查了弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键.

    3、65

    【分析】

    连接OAOCOB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分EO平分,再由各角之间的数量关系可得,根据等量代换可得,代入求解即可.

    【详解】

    解:如图所示:连接OAOCOB

    PAPBDE与圆相切于点ABE

    DO平分EO平分

    故答案为:65.

    【点睛】

    题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.

    4、##

    【分析】

    AC相交于点D,过点D,垂足为点E,根据勾股定理逆定理可得为直角三角形,根据三边关系可得,根据题意及等角对等边得出,在中,利用正弦函数可得,结合图形,利用扇形面积公式及三角形面积公式求解即可得.

    【详解】

    解:设AC相交于点D,过点D,垂足为点E

    为直角三角形,

    绕点B顺时针方向旋转45°得到

    中,

    故答案为:

    【点睛】

    题目主要考查勾股定理逆定理,旋转的性质,等角对等边的性质,正切函数,扇形面积等,理解题意,结合图形,综合运用这些知识点是解题关键.

    5、

    【分析】

    过点C于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.

    【详解】

    解:过点C于点H

    在平行四边形中,

    平行四边形的面积为:

    图中黑色阴影部分的面积为:

    故答案为:

    【点睛】

    本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.

    三、解答题

    1、(1)见解析;(2)4

    【分析】

    (1)连接OB,证明△AOB≌△AOCSSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;

    (2)在Rt△BOD中,勾股定理求得BD,根据sinD,代入数值即可求得答案

    【详解】

    解:(1)连接OB

    AB是⊙O的切线,

    OBAB

    即∠ABO=90°,

    BC是弦,OABC

    CEBE

    ACAB

    在△AOB和△AOC中,

    ∴△AOB≌△AOCSSS),

    ∴∠ACO=∠ABO=90°,

    ACOC

    AC是⊙O的切线;

    (2)在Rt△BOD中,由勾股定理得,

    BD=2

    ∵sinD,⊙O半径为2,OD=4.

    解得AC=2

    ADBD+AB=4

    【点睛】

    本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.

    2、(1)见解析;(2)17

    【分析】

    (1)由旋转的性质可得CDCE,∠DCE=90°=∠ACB,由“SAS”可证△ACD≌△BCE

    (2)由∠ACB=90°,ACBC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BEAD=5,∠CBE=∠CAD=45°,则∠ABE=∠ABC+∠CBE=90°,然后利用勾股定理求出BD的长即可得到答案.

    【详解】

    解:(1)证明:∵将线段CD绕点C按逆时针方向旋转90°得到线段CE

    CDCE,∠DCE=90°=∠ACB

    ∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE

    在△ACD和△BCE中,

    ∴△ACD≌△BCESAS);

    (2)∵∠ACB=90°,ACBC

    ∴∠CAB=∠CBA=45°,

    ∵△ACD≌△BCE

    BEAD=5,∠CBE=∠CAD=45°,

    ∴∠ABE=∠ABC+∠CBE=90°,

    AB=AD+BD=17.

    【点睛】

    本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键.

    3、

    (1)见解析

    (2)见解析

    【分析】

    (1)根据轴对称图形,中心对称图形的性质画出图形即可.

    (2)根据中心对称图形的定义画出图形即可.

    (1)

    解:图形如图①②所示.

    (2)

    解:图形如图③所示,点P即为所求作.

    【点睛】

    本题考查利用旋转变换设计图案,正方形的性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.

    4、

    (1)见解析

    (2)

    【分析】

    (1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;

    (2)证明,得出对应边成比例,即可求出的长.

    (1)

    证明:连接,如图所示:

    的直径,

    的切线;

    (2)

    解:的半径为

    【点睛】

    本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.

    5、2+

    【分析】

    连接ACCMAB,过点CCHOAH,设OC=a.利用勾股定理构建方程解决问题即可.

    【详解】

    解:连接ACCMAB,过点CCHOAH,设OC=a

    ∵∠AOB=90°,

    AB是直径,

    A(-4,0),B(0,2),

    ∵∠AMC=2∠AOC=120°,

    RtCOH中,

    RtACH中,AC2=AH2+CH2

    a=2+ 或2-(因为OCOB,所以2-舍弃),

    OC=2+

    故答案为:2+

    【点睛】

    本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.

     

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试课后练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后练习题,共30页。

    初中数学第24章 圆综合与测试课后复习题:

    这是一份初中数学第24章 圆综合与测试课后复习题,共30页。

    初中数学沪科版九年级下册第24章 圆综合与测试习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试习题,共29页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map