终身会员
搜索
    上传资料 赚现金

    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向攻克练习题(含详解)

    立即下载
    加入资料篮
    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向攻克练习题(含详解)第1页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向攻克练习题(含详解)第2页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向攻克练习题(含详解)第3页
    还剩25页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第24章 圆综合与测试同步测试题

    展开

    这是一份初中第24章 圆综合与测试同步测试题,共28页。


    沪科版九年级数学下册第24章圆定向攻克

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、已知⊙O的半径为4,,则点A在(     

    A.⊙O B.⊙O C.⊙O D.无法确定

    2、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是(   

    A.50° B.60° C.40° D.30°

    3、如图,DC是⊙O的直径,弦ABCDM,则下列结论不一定成立的是(    )

    A.AM=BM B.CM=DM C. D.

    4、如图所示四个图形中,既是轴对称图形又是中心对称图形的是(   

    A. B.

    C. D.

    5、如图,在中,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是(   

    A. B. C. D.

    6、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12

    7、下列图形中,既是轴对称图形,又是中心对称图形的是(  )

    A. B. C. D.

    8、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是(      ).

    A.90° B.100° C.120° D.150°

    9、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△ABC′的位置,使CCAB,则旋转角的度数为(   

    A.64° B.52° C.42° D.36°

    10、点P(-3,1)关于原点对称的点的坐标是(   

    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、圆锥的母线长为,底面圆半径为r,则全面积为______.

    2、一条弧所对的圆心角为,弧长等于,则这条弧的半径为________.

    3、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.

    4、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为______.

    5、一块直角三角板的30°角的顶点A落在上,两边分别交BC两点,若弦BC长为4,则的半径为______.

    三、解答题(5小题,每小题10分,共计50分)

    1、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于BC两点,点B的坐标为,点D上,且,求OA的半径和圆心A的坐标.

    元元的做法如下,请你帮忙补全解题过程:

    解:如图2,连接BC.作AELOBEAFOCF

    (依据是   

    (依据是    ).

    ,.

    BC的直径(依据是    ).

    A的坐标为    的半径为   

    2、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG

    (1)如图,若点AED第一次在同一直线上,BGCE交于点H,连接BE

    ①求证:BE平分∠AEC

    ②取BC的中点P,连接PH,求证:PHCG

    ③若BC=2AB=2,求BG的长.

    (2)若点AED第二次在同一直线上,BC=2AB=4,直接写出点DBG的距离.

    3、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)

    (1)画出关于原点对称的图形,并写出点的坐标;

    (2)画出绕点O逆时针旋转后的图形,并写出点的坐标;

    (3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)

    4、如图,AB是⊙O的直径,弦CDAB于点EAM是△ACD的外角∠DAF的平分线.

    (1)求证:AM是⊙O的切线;

    (2)连接CO并延长交AM于点N,若⊙O的半径为2,∠ANC = 30°,求CD的长.

    5、在等边中,将线段AB绕点A顺时针旋转得到线段AD

    (1)若线段DA的延长线与线段BC相交于点E(不与点BC重合),写出满足条件的α的取值范围;

    (2)在(1)的条件下连接BD,交CA的延长线于点F

    ①依题意补全图形;②用等式表示线段AEAFCE之间的数量关系,并证明.

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.

    【详解】

    解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,

    d>r

    ∴点A在⊙O外,

    故选:C.

    【点睛】

    本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔dr;②点P在圆上⇔d=r;③点P在圆内⇔dr

    2、A

    【分析】

    根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.

    【详解】

    解: 将△OAB绕点O逆时针旋转80°得到△OCD

    A的度数为110°,∠D的度数为40°,

    故选A

    【点睛】

    本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.

    3、B

    【分析】

    根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.

    【详解】

    解:∵弦ABCDCD过圆心O

    AM=BM

    即选项A、C、D选项说法正确,不符合题意,

    当根据已知条件得CMDM不一定相等,

    故选B.

    【点睛】

    本题考查了垂径定理,解题的关键是掌握垂径定理.

    4、D

    【分析】

    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.

    【详解】

    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;

    B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;

    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;

    D.既是轴对称图形,又是中心对称图形,故本选项符合题意.

    故选:D.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    5、C

    【分析】

    过点AACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.

    【详解】

    解:如图,过点AACx轴于点C

    ,则

    解得:

    ∴点

    ∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是

    ∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是

    故选:C

    【点睛】

    本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.

    6、D

    【分析】

    连接OBOC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.

    【详解】

    解:连接OBOC

    ∵∠BAC=30°,

    ∴∠BOC=60°.

    OB=OCBC=6,

    ∴△OBC是等边三角形,

    OB=BC=6.

    ∴⊙O的直径等于12.

    故选:D.

    【点睛】

    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.

    7、C

    【详解】

    解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;

    选项B不是轴对称图形,是中心对称图形,故B不符合题意;

    选项C既是轴对称图形,也是中心对称图形,故C符合题意;

    选项D是轴对称图形,不是中心对称图形,故D不符合题意;

    故选C

    【点睛】

    本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.

    8、D

    【分析】

    绕点逆时针旋转,根据旋转的性质得,则为等边三角形,得到,在中,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.

    【详解】

    解:为等边三角形,

    可将绕点逆时针旋转

    如图,连接

    为等边三角形,

    中,

    为直角三角形,且

    故选:D.

    【点睛】

    本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.

    9、B

    【分析】

    先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠ACC=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.

    【详解】

    解:∵CC′∥AB

    ∴∠ACC′=∠CAB=64°

    ∵△ABC在平面内绕点A旋转到△ABC′的位置,

    ∴∠CAC′等于旋转角,AC=AC′,

    ∴∠ACC′=∠ACC=64°,

    ∴∠CAC′=180°-∠ACC′-∠ACC=180°-2×64°=52°,

    ∴旋转角为52°.

    故选:B

    【点睛】

    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.

    10、C

    【分析】

    据平面直角坐标系中任意一点Pxy),关于原点的对称点是(xy),然后直接作答即可.

    【详解】

    解:根据中心对称的性质,可知:点P3,1)关于原点O中心对称的点的坐标为(3,1).

    故选:C.

    【点睛】

    本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.

    二、填空题

    1、

    【分析】

    根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.

    【详解】

    解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,

    故可得,这个扇形的半径为,扇形的弧长为

    圆锥的侧面积为

    圆锥的全面积为圆锥的底面积侧面积:

    故答案为:

    【点睛】

    本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.

    2、9cm

    【分析】

    由弧长公式即可求得弧的半径.

    【详解】

    故答案为:9cm

    【点睛】

    本题考查了扇形的弧长公式,善于对弧长公式变形是关键.

    3、

    【分析】

    设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.

    【详解】

    解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为

    根据题意可得:

    解得:

    故答案是:

    【点睛】

    本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.

    4、1+

    【分析】

    过点CCDx轴于D,过BBEx轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理

    得出CD=AE=,根据勾股定理CO=,当OD=CDOC最大,OC=此时解方程即可.

    【详解】

    解:过点CCDx轴于D,过BBEx轴于E,连结OB,设OD=x

    ∵点A(3,0)

    AD=x-3,

    为等腰直角三角形,

    AB=AC,∠BAC=90°,

    ∴∠BAE+∠CAD=180°-∠BAC=180°-90°=90°,

    CDx轴, BEx轴,

    ∴∠BEA=∠ADC=90°,

    ∴∠ACD+∠CAD=90°,

    ∴∠ACD=∠BAE

    在△BAE和△ACD中,

    ∴△BAE≌△ACD(AAS),

    BE=AD=x-3,EA=DC

    在Rt△EBO中,OB=1,BE= x-3,

    根据勾股定理

    EA=OE+OA=

    CD=AE=

    CO=

    OD=CDOC最大,OC=,此时

    (舍去),

    ∴线段OC长度的最大值为

    故答案为:1+

    【点睛】

    本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键.

    5、4

    【分析】

    连接OBOC,由题意易得∠BOC=60°,则有△BOC是等边三角形,然后问题可求解.

    【详解】

    连接OBOC,如图所示:

    ∵∠A=30°,

    ∴∠BOC=60°,

    OB=OC

    ∴△BOC是等边三角形,

    ,即⊙O的半径为4.

    故答案为:4.

    【点睛】

    本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.

    三、解答题

    1、垂径定理,圆周角定理,圆周角定理,(1,),2

    【分析】

    根据垂径定理,圆周角定理依次分析解答.

    【详解】

    解:如图2,连接BC.作AEOBEAFOCF

    (依据是垂径定理)

    (依据是圆周角定理).

    ,.

    BC的直径(依据是圆周角定理).

    A的坐标为(1,),的半径为2,

    故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2.

    【点睛】

    此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键.

    2、

    (1)①见解析;②见解析;③

    (2)

    【分析】

    (1)①根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;

    ②如图1,过点的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;

    ③如图2,过点的垂线,解直角三角形即可得到结论.

    (2)如图3,连接,过的延长线于的延长线于,根据旋转的性质得到,解直角三角形得到,根据三角形的面积公式即可得到结论.

    (1)

    解:①证明:矩形绕着点按顺时针方向旋转得到矩形

    平分

    ②证明:如图1,过点的垂线

    平分

    即点中点,

    中点,

    ③解:如图2,过点的垂线

    (2)

    解:如图3,连接,过的延长线于的延长线于

    将矩形绕着点按顺时针方向旋转得到矩形

    第二次在同一直线上,

    【点睛】

    本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.

    3、

    (1)见解析,

    (2)见解析,

    (3)绕点O顺时针时针旋转

    【分析】

    (1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;

    (2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;

    (3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.

    (1)

    解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:

    (2)

    解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:

    (3)

    解:根据题意得:绕点O顺时针时针旋转后可直接得到

    【点睛】

    本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.

    4、

    (1)见解析

    (2)CD=2

    【分析】

    (1)由题意易得BC=BD,∠DAM=DAF,则有∠CAB=DAB,进而可得∠BAM=90°,然后问题可求证;

    (2)由题意易得CD//AM,∠ANC=OCE=30°,然后可得OE=1,CE=,进而问题可求解.

    (1)

    证明:∵AB是⊙O的直径,弦CDAB于点E

    BC=BD

    ∴∠CAB=DAB

    AM是∠DAF的平分线

    ∴∠DAM=DAF

    ∵∠CAD+DAF=180°

    ∴∠DAB+DAM=90°

    即∠BAM=90°,ABAM

    AM是⊙O的切线

    (2)

    解:∵ABCDABAM

     CD//AM

    ∴∠ANC=OCE=30°

    Rt△OCE中,OC=2

    OE=1,CE=

    AB是⊙O的直径,弦CDAB于点E

    CD=2CE=2

    【点睛】

    本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键.

    5、(1);(2)①见解析;②AE=AF+CE,证明见解析.

    【分析】

    (1)根据“线段DA的延长线与线段BC相交于点E”可求解;

    (2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.

    【详解】

    (1)如图:AD只能在锐角∠EAF内旋转符合题意

    α的取值范围为:

    (2)补全图形如下:

    (3)AE=AF+CE

    证明:在AE上截取AH=AF,由旋转可得:AB=AD

    ∴∠D=∠ABF

    ∵△ABC为等边三角形,

    AB=AC,∠BAC=ACB=60°,

    AD=AC

    ∵∠DAF=∠CAH

    ∴△AFD≌△AHC

    ∴∠AFD=∠AHC,∠D=∠ACH

    ∴∠AFB=∠CHE

    ∵∠AFB+∠ABF=∠ACH+∠HCE=60°,

    ∴∠CHE+∠D=∠D+∠HCE=60°,

    ∴∠CHE=∠HCE

    CE=HE

    AE=AH+HE=AF+CE

    【点睛】

    本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.

     

    相关试卷

    2020-2021学年第26章 概率初步综合与测试课时训练:

    这是一份2020-2021学年第26章 概率初步综合与测试课时训练,共21页。试卷主要包含了下列事件中,属于不可能事件的是,下列说法正确的是,一个不透明的口袋里有红等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试一课一练:

    这是一份沪科版九年级下册第24章 圆综合与测试一课一练,共30页。试卷主要包含了下列图形中,是中心对称图形的是,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试同步测试题:

    这是一份数学九年级下册第24章 圆综合与测试同步测试题,共32页。试卷主要包含了下列叙述正确的有个.,下列判断正确的个数有等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map