初中沪科版第24章 圆综合与测试同步测试题
展开
这是一份初中沪科版第24章 圆综合与测试同步测试题,共25页。
沪科版九年级数学下册第24章圆必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).A.20° B.25° C.30° D.40°2、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=( )A.10 B.2 C.2 D.43、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于( )A.10 B.6 C.6 D.124、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )A.它们的开口方向相同 B.它们的对称轴相同C.它们的变化情況相同 D.它们的顶点坐标相同5、下列四个图案中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.6、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )A.22.5° B.45° C.90° D.67.5°7、若的圆心角所对的弧长是,则此弧所在圆的半径为( )A.1 B.2 C.3 D.48、下列图案中既是轴对称图形,又是中心对称图形的是( )A. B.C. D.9、下列图形中,可以看作是中心对称图形的是( )A. B.C. D.10、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为( )A.25° B.80° C.130° D.100°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.2、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.3、是的内接正六边形一边,点是优弧上的一点(点不与点,重合)且,与交于点,则的度数为_______.4、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC,若弦BC的长度为,则∠BAC=________度.5、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.2、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上.记点D1的坐标是(m,n),C1的坐标是(p,q).(1)设∠DAD1=30°,n=2,求证:OD1的长度;(2)若∠DAD1<90°,m,n满足m+n=﹣4,p2+q2=25,求p+q的值.3、阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点.易证得.大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、、三点共线,,进而可证明,故. 任务:如图3,在四边形中,,,,以为顶点的,、与、边分别交于、两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.4、如图,四边形是的内接四边形,,,.(1)求的度数.(2)求的度数.5、如图,已知在中,,D、E是BC边上的点,将绕点A旋转,得到,连接.(1)当时,时,求证:;(2)当时,与有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当,BD与DE满足怎样的数量关系时,是等腰直角三角形?(直接写出结论,不必证明) -参考答案-一、单选题1、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.2、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在Rt△B'C'C中利用勾股定理求解.【详解】解:∵在Rt△ABC中,AB=6,BC=8,∴,由旋转性质可知,AB= AB'=6,BC= B'C'=8,∴B'C=10-6=4,在Rt△B'C'C中,,故选:D.【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.3、D【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=6,∴△OBC是等边三角形,∴OB=BC=6.∴⊙O的直径等于12.故选:D.【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.4、B【分析】根据旋转的性质及抛物线的性质即可确定答案.【详解】抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.故选:B【点睛】本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.5、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、B【分析】根据同弧所对的圆周角是圆心角的一半即可得.【详解】解:∵,∴,∴,故选:B.【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.7、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r,则周长为2πr,120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键.8、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.9、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.10、D【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圆周角定理得,∠AOC=2∠B=100°,故选:D.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.二、填空题1、在⊙A上【分析】先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.【详解】解:∵点A的坐标为(4,3),∴OA==5,∵半径为5,∴OA=r,∴点O在⊙A上.故答案为:在⊙A上.【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外⇔d>r;当点P在圆上⇔d=r;当点P在圆内⇔d<r.2、【分析】如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可.【详解】解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,则OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即该球在大圆内滑行的路径MN的长度为cm,故答案为:.【点睛】本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键.3、90°【分析】先根据是的内接正六边形一边得,再根据圆周角性质得,再根据平行线的性质得,最后由三角形外角性质可得结论.【详解】解:∵是的内接正六边形一边∴∴∵∴∴ 故答案为90°【点睛】本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键4、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.【详解】解:如图作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案为:60.【点睛】本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.5、##【分析】如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是△ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可.【详解】解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点∵点C的坐标为(2,2),圆C与x轴相切于点A,∴点A的坐标为(2,0),∴OA=OD=2,即O是AD的中点,又∵M是AB的中点, ∴OM是△ABD的中位线,∴,∴当BD最小时,OM也最小,∴当B运动到时,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案为:.【点睛】本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键.三、解答题1、2+【分析】连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.利用勾股定理构建方程解决问题即可.【详解】解:连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.∵∠AOB=90°,∴AB是直径,∵A(-4,0),B(0,2),∴,∵∠AMC=2∠AOC=120°,,在Rt△COH中,,,在Rt△ACH中,AC2=AH2+CH2,∴,∴a=2+ 或2-(因为OC>OB,所以2-舍弃),∴OC=2+,故答案为:2+.【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.2、(1)4;(2)-1或-7【分析】(1)如图,且三点在一条直线上的情况,连接,过点向作垂线交点为,在直角三角形中,,,可求的长;(2)如图,过点向作垂线交点为,过点作轴垂线交于点,作交点为;由,知,,点G坐标为,得,由知的值,从而得到的值.【详解】解:(1)∵∠DAD1=30°且D1、C1、O三点在一条直线上∴如图所示,连接,过点向作垂线交点为∴∵.(2)如图过点向作垂线交点为,过点作轴垂线交于点,作交点为,在和中点横坐标可表示为∴p+q=-7或-1.【点睛】本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系.3、成立,证明见解析【分析】根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF .【详解】解:成立.证明:将绕点顺时针旋转,得到,,,,,,,、、三点共线,.,,,,.【点睛】本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.4、(1)70°;(2)103°【分析】(1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;(2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可.【详解】解:(1),,,在中,.(2)由圆周角定理,得..【点睛】题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键.5、(1)见解析;(2)∠DAE=∠BAC,见解析;(3)DE=BD,见解析【分析】(1)根据旋转的性质可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,从而得到∠DAE=∠D′AE,再利用“边角边”证明△ADE和△AD′E全等,根据全等三角形对应边相等证明即可;(2)根据旋转的性质可得AD=AD′,再利用“边边边”证明△ADE和△AD′E全等,然后根据全等三角形对应角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,从而得解;(3)求出∠D′CE=90°,然后根据等腰直角三角形斜边等于直角边的倍可得D′E=CD′,再根据旋转的性质解答即可.【详解】(1)证明:∵△ABD绕点A旋转得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC−∠DAE=120°−60°=60°,∴∠DAE=∠D′AE,在△ADE和△AD′E中, ,∴△ADE≌△AD′E(SAS),∴DE=D′E;(2)解:∠DAE= ∠BAC.理由如下:在△ADE和△AD′E中, ,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D′AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°,∴∠D′CE=45°+45°=90°,∵△D′EC是等腰直角三角形,∴D′E=CD′,由(2)DE=D′E,∵△ABD绕点A旋转得到△ACD′,∴BD=C′D,∴DE=BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共29页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试复习练习题,共36页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时作业,共29页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。