开学活动
搜索
    上传资料 赚现金

    2021-2022学年基础强化沪科版九年级数学下册第24章圆同步测评试卷(含答案详解)

    2021-2022学年基础强化沪科版九年级数学下册第24章圆同步测评试卷(含答案详解)第1页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆同步测评试卷(含答案详解)第2页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆同步测评试卷(含答案详解)第3页
    还剩23页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第24章 圆综合与测试当堂检测题

    展开

    这是一份初中数学第24章 圆综合与测试当堂检测题,共26页。试卷主要包含了等边三角形等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于(    A. B. C. D.2、如图,DC是⊙O的直径,弦ABCDM,则下列结论不一定成立的是(    )A.AM=BM B.CM=DM C. D.3、如图,在RtABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=(  )A.10 B.2 C.2 D.44、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是(      A.2个 B.3个 C.4个 D.5个5、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是(    A.50° B.70° C.110° D.120°6、如图图案中,不是中心对称图形的是(    A. B. C. D.7、如图,AB的直径,弦CDAB于点P,则CD的长为(    A. B. C. D.88、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为(    A.4 B.6 C.8 D.109、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使AGH三点刚好在金属框上,则该金属框的半径是(    A. B. C. D.10、如图,在中,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为(    A.1 B.2 C.3 D.4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的中心角是,则这个正多边形的边数为________.2、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.3、如图,PAPB分别与⊙O相切于AB两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°4、如图,在⊙O中,ABC是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.5、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.三、解答题(5小题,每小题10分,共计50分)1、如图,AB是⊙O的直径,点DE在⊙O上,四边形BDEO是平行四边形,过点DAE的延长线于点C(1)求证:CD是⊙O的切线.(2)若,求阴影部分的面积.2、如图1,BC是⊙O的直径,点AP在⊙O上,且分别位于BC的两侧(点AP均不与点BC重合),过点A AQAP,交PC 的延长线于点QAQ交⊙O于点D,已知AB=3,AC=4.(1)求证:△APQ∽△ABC(2)如图2,当点C的中点时,求AP的长.(3)连结AOOD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.3、在平面内,给定不在同一直线上的点ABC,如图所示.点O到点ABC的距离均等于rr为常数),到点O的距离等于r的所有点组成图形GABC的平分线交图形G于点D,连接ADCD.求证:AD=CD.4、如图,已知等边内接于⊙OD的中点,连接DB,DC,过点CAB的平行线,交BD的延长线于点E.(1)求证:CE是⊙O的切线;(2)若AB的长为6,求CE的长.5、如图,四边形的内接四边形,(1)求的度数.(2)求的度数. -参考答案-一、单选题1、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.【详解】解:连接CD,如图所示:∵点DAB的中点,在Rt△ACB中,由勾股定理可得故选D.【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.2、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦ABCDCD过圆心OAM=BM即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CMDM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.3、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在RtB'C'C中利用勾股定理求解.【详解】解:∵在RtABC中,AB=6,BC=8,由旋转性质可知,AB= AB'=6,BC= B'C'=8,B'C=10-6=4,RtB'C'C中,故选:D.【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.4、A【分析】根据轴对称图形与中心对称图形的概念进行判断.【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.5、B【分析】根据旋转可得,得【详解】解:绕点逆时针旋转得到△,使点的对应点恰好落在边上,故选:B.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.6、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.7、A【分析】过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点于点,连接 AB的直径,中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.8、A【分析】根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB是⊙O的直径,∵∠BAC=30°,BC=2,故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.9、A【分析】如图,记过AGH三点的圆为的垂直平分线的交点,的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过AGH三点的圆为的垂直平分线的交点, 的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 AB=2,CD=3,EF=5,结合正方形的性质可得: 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过AGH三点的圆的圆心是解本题的关键.10、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.【详解】由题意以及旋转的性质知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°为等边三角形,即AB= AD =BD=2CD=BC-BD=4-2=2故选:B.【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.二、填空题1、九9【分析】根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.【详解】解:设这个正多边形的边数为n∵这个正多边形的中心角是40°,∴这个正多边形是九边形,故答案为:九.【点睛】本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.2、18.84【分析】先根据弧长公式求得πr,然后再运用圆的周长公式解答即可.【详解】解:设圆弧所在圆的半径为厘米,解得则它所在圆的周长为(厘米),故答案为:【点睛】本题主要考查了弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键.3、【分析】连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB【详解】解:连接,如图,PAPB分别与⊙O相切故答案为:【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.4、35°【分析】利用圆周角定理求出所求角度数即可.【详解】解:都对,且故答案为:【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.5、【分析】绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是故答案为:【点睛】本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.三、解答题1、(1)见详解;(2)【分析】(1)连接OD,由题意易得,则有△ODB是等边三角形,然后可得△AEO也为等边三角形,进而可得ODAC,最后问题可求证;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圆O的半径,进而可得扇形OED和△OED的面积,则有弓形ED的面积,最后问题可求解.【详解】(1)证明:连接OD,如图所示:∵四边形BDEO是平行四边形,∴△ODB是等边三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,OE=OA∴△AEO也为等边三角形,∴∠EAO=∠DOB=60°,AEOD∴∠ODC+∠C=180°,CDAE∴∠C=90°,∴∠ODC=90°,OD是圆O的半径,CD是⊙O的切线.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,EDAB∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO为等边三角形,  ED=OE=AECDAE,∠CED=60°,∴∠CDE=30°,设△OED的高为h【点睛】本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键.2、(1)见解析;(2)(3)当时,;当时,【分析】(1)通过证,即可得(2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP(3)分类讨论, ,三种情况讨论,再通过勾股定理和相似即可求解.【详解】证明:(1)∵AQAPBC是⊙O的直径(2)如图,连接CDPDBC是⊙O的直径AB=3,AC=4∴利用勾股定理得:,即直径为5DP是⊙O的直径,且DP=BC=5∵点C的中点CD=PC是等腰直角三角形∴利用勾股定理得:,则,即:,即:(3)连接AO,ODOPCDODAC于点M(已证)OD,OP共线,为⊙O的直径情况一:当AP=PCAP=PC∴在中,∴在中,情况二:当时,同情况一:情况三:当OA=OD综上所述,当时,;当时,【点睛】本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.3、见解析【分析】由题意画图,再根据圆周角定理的推论即可得证结论.【详解】证明:根据题意作图如下:BD是圆周角ABC的角平分线,∴∠ABD=∠CBDAD=CD【点睛】本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.4、(1)见解析;(2)3【分析】(1)由题意连接OCOB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.【详解】解:(1)证明:如图连接OC、OB是等边三角形    又 ∵与⊙O相切; (2)∵四边形ABCD是⊙O的内接四边形,D的中点,     【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.5、(1)70°;(2)103°【分析】(1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;(2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可.【详解】解:(1)中,(2)由圆周角定理,得【点睛】题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试复习练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试复习练习题,共27页。

    初中数学沪科版九年级下册第24章 圆综合与测试综合训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共29页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试课后复习题:

    这是一份初中数学第24章 圆综合与测试课后复习题,共30页。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map