终身会员
搜索
    上传资料 赚现金

    2021-2022学年基础强化沪科版九年级数学下册第24章圆单元测试试题(含详细解析)

    立即下载
    加入资料篮
    2021-2022学年基础强化沪科版九年级数学下册第24章圆单元测试试题(含详细解析)第1页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆单元测试试题(含详细解析)第2页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆单元测试试题(含详细解析)第3页
    还剩26页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试单元测试复习练习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试单元测试复习练习题,共29页。


    沪科版九年级数学下册第24章圆单元测试

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、的边经过圆心与圆相切于点,若,则的大小等于(   

    A. B. C. D.

    2、在半径为6cm的圆中,的圆心角所对弧的弧长是(   

    A.cm B.cm C.cm D.cm

    3、在△ABC中,,点OAB中点.以点C为圆心,CO长为半径作⊙C,则⊙CAB的位置关系是(   

    A.相交 B.相切

    C.相离 D.不确定

    4、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是(   

    A.  B. 

    C.  D.

    5、下列四个图案中,是中心对称图形的是(  )

    A. B.

    C. D.

    6、下列图形中,既是中心对称图形也是轴对称图形的是(   

    A. B. C. D.

    7、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为(  

    A.3 B.2 C.1 D.

    8、如图,点ABC均在⊙O上,连接OAOBACBC,如果OAOB,那么∠C的度数为(   

    A.22.5° B.45° C.90° D.67.5°

    9、如图图案中,不是中心对称图形的是(   

    A. B. C. D.

    10、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为(   

    A.3 B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、AB的直径,点C上,,点P在线段OB上运动.设,则x的取值范围是________.

    2、如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点AB,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_______.

    3、如图,半圆O中,直径AB=30,弦CDAB长为6π,则由ACAD围成的阴影部分面积为_______.

    4、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.

    5、如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,正方形ABCD的顶点ABx轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A按顺时针方向旋转,BCD的对应点分别为B1C1D1,且D1C1O三点在一条直线上.记点D1的坐标是(mn),C1的坐标是(pq).

    (1)设∠DAD1=30°,n=2,求证:OD1的长度;

    (2)若∠DAD1<90°,mn满足m+n=﹣4,p2+q2=25,求p+q的值.

    2、如图,在等边中,DBC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF

    (1)若,求的度数;

    (2)若,求的大小;

    (3)猜想CFBFAF之间的数量关系,并证明.

    3、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG

    (1)如图,若点AED第一次在同一直线上,BGCE交于点H,连接BE

    ①求证:BE平分∠AEC

    ②取BC的中点P,连接PH,求证:PHCG

    ③若BC=2AB=2,求BG的长.

    (2)若点AED第二次在同一直线上,BC=2AB=4,直接写出点DBG的距离.

    4、如图,AB为⊙O的直径,点C在⊙O上,点PBA的延长线上,连接BCPC.若AB = 6,的长为π,BC = PC.求证:直线PC与⊙O相切.

    5、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)

    (1)画出关于原点对称的图形,并写出点的坐标;

    (2)画出绕点O逆时针旋转后的图形,并写出点的坐标;

    (3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.

    【详解】

    解:连接

    与圆相切于点

    故选:A.

    【点睛】

    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.

    2、C

    【分析】

    直接根据题意及弧长公式可直接进行求解.

    【详解】

    解:由题意得:的圆心角所对弧的弧长是

    故选C.

    【点睛】

    本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.

    3、B

    【分析】

    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断的切线,进而可得⊙CAB的位置关系

    【详解】

    解:连接,

    ,点OAB中点.

    CO为⊙C的半径,

    的切线,

    CAB的位置关系是相切

    故选B

    【点睛】

    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.

    4、C

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    A.是轴对称图形,不是中心对称图形,故此选项不合题意;

    B.不是轴对称图形,是中心对称图形,故此选项不符合题意;

    C.是轴对称图形,也是中心对称图形,故此选项合题意;

    D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.

    故选:C.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    5、A

    【分析】

    中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.

    【详解】

    解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,

    故选:A.

    【点睛】

    本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.

    6、A

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;

    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;

    C、是中心对称图形,不是轴对称图形,故此选项不符合题意;

    D、是中心对称图形,不是轴对称图形,故此选项不符合题意.

    故选:A.

    【点睛】

    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.

    7、B

    【分析】

    连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.

    【详解】

    解:连接OC,如图

    AB 为⊙O 的直径,CDAB,垂足为点 ECD=8,

    故选:B

    【点睛】

    本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出

    8、B

    【分析】

    根据同弧所对的圆周角是圆心角的一半即可得.

    【详解】

    解:∵

    故选:B.

    【点睛】

    题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.

    9、C

    【分析】

    根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.

    【详解】

    解:A、是中心对称图形,故A选项不合题意;

    B、是中心对称图形,故B选项不合题意;

    C、不是中心对称图形,故C选项符合题意;

    D、是中心对称图形,故D选项不合题意;

    故选:C

    【点睛】

    本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.

    10、A

    【分析】

    分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.

    【详解】

    解:连接BO,并延长交⊙OD,连结DC

    ∵∠A=30°,

    ∴∠D=∠A=30°,

    BD为直径,

    ∴∠BCD=90°,

    在Rt△BCD中,BC=3,∠D=30°,

    BD=2BC=6,

    OB=3.

    故选A.

    【点睛】

    本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.

    二、填空题

    1、

    【分析】

    分别求出当点P与点O重合时,当点P与点B重合时x的值,即可得到取值范围.

    【详解】

    解:当点P与点O重合时,

    OA=OC

    ,即

    当点P与点B重合时,

    AB的直径,

    x的取值范围是

    【点睛】

    此题考查了同圆中半径相等的性质,直径所对的圆周角是直角的性质,正确理解点P的运动位置是解题的关键.

    2、##

    【分析】

    先求出点AB的坐标,过点AAFAB,交直线BC于点F,过点FEFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案.

    【详解】

    解:∵一次函数y=-2x+4的图像与x轴、y轴分别交于点AB两点,

    ∴令,则;令,则

    ∴点A为(2,0),点B为(0,4),

    过点AAFAB,交直线BC于点F,过点FEFx轴,垂足为E,如图,

    ∴△ABF是等腰直角三角形,

    AF=AB

    ∴△ABO≌△FAEAAS),

    AO=FEBO=AE

    ∴点F的坐标为();

    设直线BC,则

    ,解得:

    ∴直线BC的函数表达式为

    故答案为:

    【点睛】

    本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.

    3、45

    【分析】

    连接OCOD,根据同底等高可知SACD=SOCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.

    【详解】

    解:连接OCOD

    ∵直径AB=30,

    OC=OD=

    CDAB

    SACD=SOCD

    长为6π

    ∴阴影部分的面积为S阴影=S扇形OCD=

    故答案为:45π

    【点睛】

    本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.

    4、

    【分析】

    根据旋转找出规律后再确定坐标.

    【详解】

    ∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,

    ∴每6次翻转为一个循环组循环,

    ∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,

    ∴翻转前进的距离为:

    如图,过点BBGxG

    则∠BAG=60°,

    ∴点B的坐标为

    故答案为:

    【点睛】

    题考查旋转的性质与正多边形,由题意找出规律是解题的关键.

    5、       

    【分析】

    OOC垂直于弦AB,利用垂径定理得到CAB的中点,然后由OA=OB,且∠AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由CAB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OAAC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离.

    【详解】

    解:过OOCAB,则有CAB的中点,

    OA=OB,∠AOB=90°,AB=a

    ∴根据勾股定理得: OA2+OB2=AB

    OA=

    RtAOC中,OA=AC=AB=

    根据勾股定理得:OC==

    故答案为:

    【点睛】

    此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.

    三、解答题

    1、(1)4;(2)-1或-7

    【分析】

    (1)如图,三点在一条直线上的情况,连接,过点作垂线交点为,在直角三角形中,,可求的长;

    (2)如图,过点作垂线交点为,过点轴垂线交于点,作交点为;由,知,点G坐标为,得,由的值,从而得到的值.

    【详解】

    解:(1)∵∠DAD1=30°且D1C1O三点在一条直线上

    ∴如图所示,连接,过点作垂线交点为

    (2)如图过点作垂线交点为,过点轴垂线交于点,作交点为

    点横坐标可表示为

    p+q=-7或-1.

    【点睛】

    本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系.

    2、(1)20°;(2);(3)AF= CF+BF,理由见解析

    【分析】

    (1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∠CBF=∠ABE-∠ABC=20°;

    (2)同(1)求解即可;

    (3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明FCG三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF

    【详解】

    解:(1)∵△ABC是等边三角形,

    AB=AC,∠BAC=∠ABC=60°,

    由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE

    ∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE

    ∴∠CBF=∠ABE-∠ABC=20°;

    (2)∵△ABC是等边三角形,

    AB=AC,∠BAC=∠ABC=60°,

    由折叠的性质可知,AC=AE

    AB=AE

    (3)AF= CF+BF,理由如下:

    如图所示,将△ABF绕点A逆时针旋转60°得到△ACG

    AF=AG,∠FAG=60°,∠ACG=∠ABFBF=CG

    在△AEF和△ACF中,

    ∴△AEF≌△ACFSAS),

    ∴∠AFE=∠AFC

    ∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,

    ∴∠BFD=∠ACD=60°,

    ∴∠AFE=∠AFC=60°,

    ∴∠BFC=120°,

    ∴∠BAC+∠BFC=180°,

    ∴∠ABF+∠ACF=180°,

    ∴∠ACG+∠ACF=180°,

    FCG三点共线,

    ∴△AFG是等边三角形,

    AF=GF=CF+CG=CF+BF

    【点睛】

    本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.

    3、

    (1)①见解析;②见解析;③

    (2)

    【分析】

    (1)①根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;

    ②如图1,过点的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;

    ③如图2,过点的垂线,解直角三角形即可得到结论.

    (2)如图3,连接,过的延长线于的延长线于,根据旋转的性质得到,解直角三角形得到,根据三角形的面积公式即可得到结论.

    (1)

    解:①证明:矩形绕着点按顺时针方向旋转得到矩形

    平分

    ②证明:如图1,过点的垂线

    平分

    即点中点,

    中点,

    ③解:如图2,过点的垂线

    (2)

    解:如图3,连接,过的延长线于的延长线于

    将矩形绕着点按顺时针方向旋转得到矩形

    第二次在同一直线上,

    【点睛】

    本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.

    4、见详解

    【分析】

    连接OC,由题意易得∠AOC=60°,则有∠B=∠OCB=30°,然后可得∠P=∠B=30°,进而可得∠OCP=90°,最后问题可求证.

    【详解】

    证明:连接OC,如图所示:

    的长为π,AB=6,

    OC=OA=3,

    OB=OC

    ∴∠B=∠OCB=30°,

    BC=PC

    ∴∠P=∠B=30°,

    ∴∠POC+∠P=90°,即∠OCP=90°,

    OC是圆O的半径,

    ∴直线PC与⊙O相切.

    【点睛】

    本题主要考查切线的判定定理,熟练掌握切线的判定定理是解题的关键.

    5、

    (1)见解析,

    (2)见解析,

    (3)绕点O顺时针时针旋转

    【分析】

    (1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;

    (2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;

    (3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.

    (1)

    解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:

    (2)

    解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:

    (3)

    解:根据题意得:绕点O顺时针时针旋转后可直接得到

    【点睛】

    本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.

     

    相关试卷

    2021学年第24章 圆综合与测试当堂达标检测题:

    这是一份2021学年第24章 圆综合与测试当堂达标检测题,共33页。

    数学沪科版第24章 圆综合与测试同步达标检测题:

    这是一份数学沪科版第24章 圆综合与测试同步达标检测题,共35页。试卷主要包含了如图,一个宽为2厘米的刻度尺,等边三角形,下列叙述正确的有个.等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试同步测试题:

    这是一份数学九年级下册第24章 圆综合与测试同步测试题,共30页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map