初中数学沪科版九年级下册第24章 圆综合与测试课后练习题
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后练习题,共30页。
沪科版九年级数学下册第24章圆专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )A. B.1 C.2 D.3、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )A.1 B.2 C.3 D.44、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )A. B. C.3 D.5、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )A. B. C. D.6、若的圆心角所对的弧长是,则此弧所在圆的半径为( )A.1 B.2 C.3 D.47、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )A.相离 B.相切 C.相交 D.相交或相切8、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是( )A.80° B.70° C.60° D.50°9、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<210、下列图形中,可以看作是中心对称图形的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.2、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.3、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π)4、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.5、如图,点D为边长是的等边△ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持∠ADB=120°不变,则四边形ADBC的面积S的最大值是 ____.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.2、如图,点A是外一点,过点A作出的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)3、在平面直角坐标系xOy中,旋转角满足,对图形M与图形N给出如下定义:将图形M绕原点逆时针旋转得到图形.P为图形上任意一点,Q为图形N上的任意一点,称PQ长度的最小值为图形M与图形N的“转后距”.已知点,点,点.(1)当时,记线段OA为图形M.①画出图形;②若点C为图形N,则“转后距”为______;③若线段AC为图形N,求“转后距”;(2)已知点,点,记线段AB为图形M,线段PQ为图形N,对任意旋转角,“转后距”大于1,直接写出t的取值范围.4、如图①,在Rt△ABC中,∠BAC = 90°,AB = k·AC,△ADE是由△ABC绕点A逆时针旋转某个角度得到的,BC与DE交于点F,直线BD与EC交于点G(1)求证:BD = k·EC;(2)求∠CGD的度数;(3)若k = 1(如图②),求证:A,F,G三点在同一直线上.5、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).(1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;(2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2. -参考答案-一、单选题1、B【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B.既是轴对称图形,又是中心对称图形,故符合题意;C.不是轴对称图形,是中心对称图形,故不符合题意;D.是轴对称图形,不是中心对称图形,故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故选A.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.3、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.【详解】由题意以及旋转的性质知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故为等边三角形,即AB= AD =BD=2则CD=BC-BD=4-2=2故选:B.【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.4、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接, ,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.5、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.【详解】解:根据题意,如图:∵AB是的直径,OD是半径,,∴AE=CE,∴阴影CED的面积等于AED的面积,∴,∵,,∴,∴;故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.6、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r,则周长为2πr,120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键.7、B【分析】圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm, ⊙O的半径等于圆心O到直线l的距离, 直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.8、A【分析】根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.【详解】证明:∵绕点C逆时针旋转得到,∴,,∴∠ADC=∠DAC,∵点A,D,E在同一条直线上,∴,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故选A.【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.9、A【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O的半径为4,点P 在⊙O外部,∴OP需要满足的条件是OP>4,故选:A.【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.10、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不符合题意;D.不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题1、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,∴当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交.故答案为:相切或相交.【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.2、【分析】连接OC交AB于点D,再连接OA.根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.【详解】解:如下图所示,连接OC交AB于点D,再连接OA.∵折叠后弧的中点与圆心重叠,∴,OD=CD.∴AD=BD.∵圆形纸片的半径为10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案为:.【点睛】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.3、【分析】先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.【详解】过C作CD⊥OA于D∵一次函数的图象与x轴交于点A,与y轴交于点B,∴当时,,B点坐标为(0,1)当时,,A点坐标为∴∵作的外接圆,∴线段AB中点C的坐标为,∴三角形BOC是等边三角形∴∵C的坐标为∴∴故答案为:【点睛】本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.4、3【分析】由切线长定理和,可得为等边三角形,则.【详解】解:连接,如下图:,分别为的切线,,为等腰三角形,,,为等边三角形,,,.故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.5、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可.【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持∠ADB=120°不变,在圆上运动,当点运动到的中点时,四边形ADBC的面积S的最大值,过点作的垂线交于点,如图:,,,在中,,解得:,,过点作的垂线交于,,,,,故答案是:.【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质.三、解答题1、2+【分析】连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.利用勾股定理构建方程解决问题即可.【详解】解:连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.∵∠AOB=90°,∴AB是直径,∵A(-4,0),B(0,2),∴,∵∠AMC=2∠AOC=120°,,在Rt△COH中,,,在Rt△ACH中,AC2=AH2+CH2,∴,∴a=2+ 或2-(因为OC>OB,所以2-舍弃),∴OC=2+,故答案为:2+.【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.2、见解析【分析】先作线段的垂直平分线.确定的中点,再以中点为圆心,一半为半径作圆交于点,然后作直线,则根据圆周角定理可得为所求.【详解】如图,直线AB就是所求作的,(作法不唯一,作出一条即可,需要有作图痕迹)【点睛】本题考查了作图复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.3、(1)①OA′,图形见详解;②2;③ “转后距”为;(2)t的取值范围为t<-5或0<t<2或.【分析】(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′.②∵点C为图形N,求出OC=2最短距离;③过点O作OF⊥AC于F,先证△OAC为等边三角形,OF⊥AC,根据勾股定理求出OF=即可;(2)点,点,可求tan∠OPQ=,得出当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,得出∠CAB=∠ABC=30°,分三种情况,当°,当点P在点B右边,PB=t-4,BD>1,列不等式,解得,当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,PB=2PE>2×1即4-t>2解得t<2,当t=0时,OA′=2,A′Q=2-1=1,t>0,当点P在B′左边,PB′>1,OB′=OB=4,t<-5即可.【详解】解:(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′;②∵点C为图形N,OC=2为图形M与图形N的“转后距”,∴“转后距”为2,故答案为2;③线段AC为图形N,过点O作OF⊥AC于F,根据勾股定理OA=,AC=,∴OA=AC=OC=2,∴△OAC为等边三角形,∵OF⊥AC,∴AF=CF=1,∴OF=,∴“转后距”为;(2)∵点,点,∴tan∠OPQ=,∴当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,∵CB=4-2=2=AC,∠ACO=60°,∴∠CAB=∠ABC=30°,分三种情况,当°,当点P在点B右边,PB=t-4,BD>1,∴BPsin60>1,∴,解得;当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,∴∠OEB=180°-∠EPB-∠ABC=180°-60°-30°=90°,∵PB=4-t,∴PB=2PE>2×1即4-t>2,解得t<2,当t=0时,点P与原点O重合,OA′=2,A′Q=2-1=1,∴t>0,∴0<t<2;当点P在B′左边,PB′>1,OB′=OB=4,∴t<-5;综合t的取值范围为t<-5或0<t<2或.【点睛】本题考查图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理,掌握图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理是解题关键.4、(1)见解析;(2)90°;(3)见解析【分析】(1)由旋转的性质可得对应边相等对应角相等,由相似三角形的判定得出△ABD∽△ACE,由相似三角形的性质即可得出结论 ;(2)由(1)证得△ABD∽△ACE,和等腰三角形的性质得出,进而推出,由四边形的内角和定理得出结论;(3)连接CD,由旋转的性质和等腰三角形的性质得出,CG=DG,FC=FD,由垂直平分线的判断得出A,F,G都在CD的垂直平分线上,进而得出结论.【详解】证明:(1)∵△ADE是由△ABC绕点A逆时针旋转某个角度得到的,∴AB=AD,AC=AE,∠BAD=∠CAE,∴,∴△ABD∽△ACE,∴,∵AB = k·AC,∴,∴BD = k·EC;(2)由(1)证得△ABD∽△ACE,∴,∵AB=AD,AC=AE,∠BAC = 90°,∴,∴,∵,∴,∴∴在四边形ADGE中,,∠BAC = 90°,∴∠CGD=360°-180°-90°=90°;(3)连接CD,如图:∵△ADE是由△ABC绕点A逆时针旋转某个角度得到的,∠BAC = 90°,AB = k·AC,∴当k = 1时,△ABC和△ADE为等腰直角三角形,∴,∴,∴,∴CG=DG∵,∴,∴FC=FD,∴点A、点G和点F在CD的垂直平分线上, ∴A,F,G三点在同一直线上.【点睛】本题考查了相似三角形的性质和判定,旋转的性质,等腰直角三角形的性质和判定,垂直平分线的判定等知识点,熟练掌握相似三角形的判定和垂直平分线的判定是解题的关键.5、(1)图见解析;A1(3,3);(2)见解析【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:△A2B2C2,即为所求.【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.
相关试卷
这是一份初中数学第24章 圆综合与测试课后复习题,共30页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试习题,共29页。
这是一份初中沪科版第24章 圆综合与测试达标测试,共27页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。