![2021-2022学年基础强化沪科版九年级数学下册第24章圆单元测试试题(名师精选)第1页](http://www.enxinlong.com/img-preview/2/3/12683186/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪科版九年级数学下册第24章圆单元测试试题(名师精选)第2页](http://www.enxinlong.com/img-preview/2/3/12683186/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪科版九年级数学下册第24章圆单元测试试题(名师精选)第3页](http://www.enxinlong.com/img-preview/2/3/12683186/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中第24章 圆综合与测试单元测试习题
展开
这是一份初中第24章 圆综合与测试单元测试习题,共35页。
沪科版九年级数学下册第24章圆单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下面的图形中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2、下列图形中,是中心对称图形也是轴对称图形的是( )
A. B. C. D.
3、如图,CD是的高,按以下步骤作图:
(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.
(2)作直线GH交AB于点E.
(3)在直线GH上截取.
(4)以点F为圆心,AF长为半径画圆交CD于点P.
则下列说法错误的是( )
A. B. C. D.
4、如图,在中,,,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )
A. B. C. D.
5、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )
A.3 B.1 C. D.
6、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
7、下列各点中,关于原点对称的两个点是( )
A.(﹣5,0)与(0,5) B.(0,2)与(2,0)
C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)
8、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是( ).
A.90° B.100° C.120° D.150°
9、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
10、下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点D为边长是的等边△ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持∠ADB=120°不变,则四边形ADBC的面积S的最大值是 ____.
2、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.
3、如图,在中,,分别以、、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当,时,则阴影部分的面积为__________.
4、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.
5、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系xOy中,的半径为2.点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”.
(1)如图,点A,B,C,D横、纵坐标都是整数.在点B,C,D中,与点A组成的“成对关联点”的点是______;
(2)点在第一象限,点F与点E关于x轴对称.若点E,F是的“成对关联点”,直接写出t的取值范围;
(3)点G在y轴上.若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围.
2、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H.
(1)当直线l在如图①的位置时
①请直接写出与之间的数量关系______.
②请直接写出线段BH,EH,CH之间的数量关系______.
(2)当直线l在如图②的位置时,请写出线段BH,EH,CH之间的数量关系并证明;
(3)已知,在直线l旋转过程中当时,请直接写出EH的长.
3、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,将△ABC绕点B按顺时针方向旋转.
(1)当C转到AB边上点C′位置时,A转到A′,(如图1所示)直线CC′和AA′相交于点D,试判断线段AD和线段A′D之间的数量关系,并证明你的结论.
(2)将Rt△ABC继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)将Rt△ABC旅转至A、C′、A′三点在一条直线上时,请直接写出此时旋转角α的度数.
4、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.
5、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).
(1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;
(2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.
-参考答案-
一、单选题
1、A
【详解】
解:A、既是轴对称图形又是中心对称图形,此项符合题意;
B、是中心对称图形,不是轴对称图形,此项不符题意;
C、是轴对称图形,不是中心对称图形,此项不符题意;
D、是轴对称图形,不是中心对称图形,此项不符题意;
故选:A.
【点睛】
本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
2、C
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
【详解】
解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;
B、是轴对称图形,不是中心对称图形,故B选项不符合题意;
C、既是轴对称图形,又是中心对称图形,故C选项符合题意;
D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.
故选:C.
【点睛】
本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
3、C
【分析】
连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.
【详解】
解:连接AF、BF,由作法可知,FE垂直平分AB,
∴,故A正确;
∵CD是的高,
∴,故B正确;
∵,,
∴,故C错误;
∵,
∴∠AFE=45°,
同理可得∠BFE=45°,
∴∠AFB=90°,
,故D正确;
故选:C.
【点睛】
本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.
4、B
【分析】
阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.
【详解】
解:由图可知:阴影部分的面积=扇形扇形,
由旋转性质可知:,,
,,
在中,,,,
,,
有勾股定理可知:,
阴影部分的面积=扇形扇形
.
故选:B.
【点睛】
本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.
5、D
【分析】
根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.
【详解】
解:如图,设与相交于点,
,,
,
旋转,
,
是等边三角形,
,,
,
,
,
,
,
阴影部分的面积为
故选D
【点睛】
本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.
6、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项不符合题意;
D、不是轴对称图形,是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7、D
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;
B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;
C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;
D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;
故选:D.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
8、D
【分析】
将绕点逆时针旋转得,根据旋转的性质得,,,则为等边三角形,得到,,在中,,,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.
【详解】
解:为等边三角形,
,
可将绕点逆时针旋转得,
如图,连接,
,,,
为等边三角形,
,,
在中,,,,
,
为直角三角形,且,
.
故选:D.
【点睛】
本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.
9、D
【详解】
解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
.不是轴对称图形,是中心对称图形,故本选项不符合题意;
.是轴对称图形,不是中心对称图形,故本选项不符合题意;
.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
10、B
【分析】
根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
【详解】
解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
B、是中心对称图形但不是轴对称图形,故符合题意;
C、既不是轴对称图形也不是中心对称图形,故不符合题意;
D、是轴对称图形但不是中心对称图形,故不符合题意;
故选B.
【点睛】
本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
二、填空题
1、
【分析】
根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可.
【详解】
解:根据题意作等边三角形的外接圆,
D在运动过程中始终保持∠ADB=120°不变,
在圆上运动,
当点运动到的中点时,四边形ADBC的面积S的最大值,
过点作的垂线交于点,如图:
,
,
,
在中,
,
解得:,
,
过点作的垂线交于,
,
,
,
,
故答案是:.
【点睛】
本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质.
2、
【分析】
连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
【详解】
解:如图所示,连接OB,交AC于点D,
∵四边形OABC为平行四边形,,
∴四边形OABC为菱形,
∴,,,
∵,
∴为等边三角形,
∴,
∴,
在中,设,则,
∴,
即,
解得:或(舍去),
∴的长为:,
故答案为:.
【点睛】
题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
3、
【分析】
根据阴影部分面积等于以为直径的2 个半圆的面积加上减去为半径的半圆面积即.
【详解】
解:在中,,
,
.
故答案为:
【点睛】
本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.
4、45
【分析】
连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.
【详解】
解:连接OC,OD,
∵直径AB=30,
∴OC=OD=,
∴CD∥AB,
∴S△ACD=S△OCD,
∵长为6π,
∴阴影部分的面积为S阴影=S扇形OCD=,
故答案为:45π.
【点睛】
本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.
5、
【分析】
先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.
【详解】
解:∵BC是圆O的切线,
∴∠OBC=90°,
∵四边形ABCO是平行四边形,
∴AO=BC,
又∵AO=BO,
∴BO=BC,
∴∠BOC=∠BCO=45°,
∵OD=OB,
∴∠ODB=∠OBD,
∵∠ODB+∠OBD=∠BOC,
∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,
故答案为:22.5°.
【点睛】
本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.
三、解答题
1、(1)B和C;(2);(3)
【分析】
(1)根据图形可确定与点A组成的“成对关联点”的点;
(2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;
(3)分类讨论:点G在上,点G在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围.
【详解】
(1)如图所示:
在点B,C,D中,与点A组成的“成对关联点”的点是B和C,
故答案为:B和C;
(2)∵
∴在直线上,
∵点F与点E关于x轴对称,
∴在直线,
如下图所示:
直线和与分别交于点,,与直线分别交于,,
由题可得:,
当点E在线段上时,有的“成对关联点”
∴;
(3)
如图,当点G在上时,轴,在上不存在这样的矩形;
如图,当点G在下方时,也不存在这样的矩形;
如图,当点G在上方时,存在这样的矩形GMNH,
当恰好只能构成一个矩形时,
设,直线与y轴相交于点K,
则,,,,,
∴,即,
∴,
解得:或(舍),
综上:当时,点G,H是的“成对关联点”.
【点睛】
本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键.
2、(1)①;②;(2);证明见解析;(3)或.
【分析】
(1)①,根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CF⊥DE,得出CF平分∠ECD即可;
②,过点C作CG⊥BE于G,根据BC=EC,得出∠ECG=∠BCG=,根据∠ECH=∠HCD=,可得CG=HG,根据勾股定理在Rt△GHC中,,根据GE=,得出即可;
(2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;
(3)或,根据,分两种情况,当∠ABE=90°-15°=75°时,BC=CE,先证△CDE为等边三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根据CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根据勾股定理HE=,当∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根据30°直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可.
【详解】
解:(1)①
∵CE=BC,四边形ABCD为正方形,
∴BC=CD=CE,
∵CF⊥DE,
∴CF平分∠ECD,
∴∠ECH=∠HCD,
故答案为:∠ECH=∠HCD;
②,过点C作CG⊥BE于G,
∵BC=EC,
∴∠ECG=∠BCG=,
∵∠ECH=∠HCD=,
∴∠GCH=∠ECG+∠ECF=+,
∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,
∴CG=HG,
在Rt△GHC中,
∴,
∵GE=,
∴GH=GE+EH=,
∴,
∴,
∴,
故答案是:;
(2),
证明:过点C作交BE于点M,
则,
∴⁰,
∴,
∵,,
∴,,
∴,
∴,
∴,,
∴是等腰直角三角形,
∴,
∵,
∴,
(3)或,
∵,分两种情况,
当∠ABE=90°-15°=75°时,
∵BC=CE,
∴∠CBE=∠CEB=15°,
∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,
∴∠DCE=∠BCE-∠BCD=150°=90°=60°,
∵CE=CD,
∴△CDE为等边三角形,
∴DE=CD=AB=2,∠DEC=60°,
∴∠FEH=∠DEC=∠CEB=60°-15°=45°,
∵CF⊥DE,
∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,
∴EF=HF=1,
∴HE=,
当∠ABE=90°+15°=105°,
∵BC=CE,∠CBE=∠CEB=15°,
∴∠BCE=180°-∠CBE-∠CEB=150°,
∴∠DCE=360°-∠DCB-∠BCE=120°,
∵CE=BC=CD,CH⊥DE,
∴∠FCE=,
∴∠FEC=180°-∠CFE-∠FCE=30°,
∴CF=,
∴EF=,
∵∠HEF=∠CEB+∠CEF=15°+30°=45°,
∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,
∴FH=FE,
∴EH=,
∴或.
【点睛】
本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键.
3、
(1),证明见解析
(2)成立,证明见解析
(3)
【分析】
(1)设,先根据直角三角形的性质可得,再根据旋转的性质可得,然后根据等边三角形的判定与性质可得,,都是等边三角形,从而可得,由此即可得出结论;
(2)在上截取,连接,先根据旋转的性质可得,从而可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,,然后根据三角形的外角性质可得,最后根据等腰三角形的判定可得,由此即可得出结论;
(3)如图(见解析),先根据旋转的性质可得,再根据直角三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据旋转角即可得.
(1)
解:,证明如下:
设,
在中,,
,
由旋转的性质得:,
,和都是等边三角形,
,
,
是等边三角形,
,
;
(2)
解:成立,证明如下:
如图,在上截取,连接,
由旋转的性质得:,
,
,
在和中,,
,
,
,
,
;
(3)
解:如图,当点三点在一条直线上时,
由旋转的性质得:,
,
在和中,,
,
,
则旋转角.
【点睛】
本题考查了旋转的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.
4、2+
【分析】
连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.利用勾股定理构建方程解决问题即可.
【详解】
解:连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.
∵∠AOB=90°,
∴AB是直径,
∵A(-4,0),B(0,2),
∴,
∵∠AMC=2∠AOC=120°,
,
在Rt△COH中,,
,
在Rt△ACH中,AC2=AH2+CH2,
∴,
∴a=2+ 或2-(因为OC>OB,所以2-舍弃),
∴OC=2+,
故答案为:2+.
【点睛】
本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.
5、(1)图见解析;A1(3,3);(2)见解析
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用旋转的性质得出对应点位置进而得出答案.
【详解】
解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);
(2)如图所示:△A2B2C2,即为所求.
【点睛】
此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共34页。试卷主要包含了在圆内接四边形ABCD中,∠A,如图,是的直径,等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试课后作业题,共26页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共28页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。