沪科版九年级下册第24章 圆综合与测试当堂达标检测题
展开这是一份沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共30页。试卷主要包含了如图,点A等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
A.相交 B.相切
C.相离 D.不确定
2、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )
A.3 B.4 C.5 D.6
4、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )
A.30° B.60°
C.90° D.120°
5、的边经过圆心,与圆相切于点,若,则的大小等于( )
A. B. C. D.
6、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是( ).
A.90° B.100° C.120° D.150°
7、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )
A.45° B.60° C.90° D.120°
8、下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
9、如图,点A、B、C在上,,则的度数是( )
A.100° B.50° C.40° D.25°
10、平面直角坐标系中点关于原点对称的点的坐标是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知,在中,,.将绕点A逆时针旋转一个角至位置,连接BD,CE交于点F.
(I)求证:;
(2)若四边形ABFE为菱形,求的值;
(3)在(2)的条件下,若,直接写出CF的值.
2、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=110°,则的长为__.
3、在△ABC中,AB = AC,以AB为直径的圆O交BC边于点D.要使得圆O与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD > AB;④AB < DE < AB.
4、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.
5、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.
三、解答题(5小题,每小题10分,共计50分)
1、在所给的的正方形网格中,按下列要求操作:(单位正方形的边长为1)
(1)请在第二象限内的格点上找一点,使是以为底的等腰三角形,且腰长是无理数,求点的坐标;
(2)画出以点为中心,旋转180°后的,并求的面积.
2、如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(与A、B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE、BE
(1)求证:△ACD≌△BCE;
(2)若BE=5,DE=13,求AB的长
3、如图,四边形ABCD内接于⊙O,AC是直径,点C是劣弧BD的中点.
(1)求证:.
(2)若,,求BD.
4、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.
已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.
(1)求弦AC的长.
(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.
(3)当OE=1时,求点A与点D之间的距离(直接写出答案).
5、如图,是⊙的直径,弦,垂足为E,弦与弦相交于点G,且,过点C作的垂线交的延长线于点H.
(1)判断与⊙的位置关系并说明理由;
(2)若,求弧的长.
-参考答案-
一、单选题
1、B
【分析】
根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
【详解】
解:连接,
,点O为AB中点.
CO为⊙C的半径,
是的切线,
⊙C 与AB的位置关系是相切
故选B
【点睛】
本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
2、D
【详解】
解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
.不是轴对称图形,是中心对称图形,故本选项不符合题意;
.是轴对称图形,不是中心对称图形,故本选项不符合题意;
.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、B
【分析】
由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
【详解】
∵PA,PB是⊙O的切线,A,B为切点,
∴,,
∴在和中,,
∴,
∴.
故选:B
【点睛】
本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
4、B
【分析】
由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.
【详解】
解:因为每次旋转相同角度,旋转了六次,
且旋转了六次刚好旋转了一周为360°,
所以每次旋转相同角度 .
故选:B.
【点睛】
本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.
5、A
【分析】
连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
【详解】
解:连接,
,
,
与圆相切于点,
,
,
故选:A.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
6、D
【分析】
将绕点逆时针旋转得,根据旋转的性质得,,,则为等边三角形,得到,,在中,,,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.
【详解】
解:为等边三角形,
,
可将绕点逆时针旋转得,
如图,连接,
,,,
为等边三角形,
,,
在中,,,,
,
为直角三角形,且,
.
故选:D.
【点睛】
本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.
7、B
【分析】
设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.
【详解】
解:设∠ADC=α,∠ABC=β;
∵四边形ABCO是菱形,
∴∠ABC=∠AOC;
∠ADC=β;
四边形为圆的内接四边形,
α+β=180°,
∴ ,
解得:β=120°,α=60°,则∠ADC=60°,
故选:B.
【点睛】
该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.
8、B
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.
【详解】
A.不是中心对称图形,故本选项不符合题意;
B.是中心对称图形,故本选项符合题意;
C.不是中心对称图形,故本选项不符合题意;
D.不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9、C
【分析】
先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.
【详解】
∵∠ACB=50°,
∴∠AOB=100°,
∵OA=OB,
∴∠OAB=∠OBA= 40°,
故选:C.
【点睛】
本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
10、B
【分析】
根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
【详解】
解:平面直角坐标系中点关于原点对称的点的坐标是
故选B
【点睛】
本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.
二、填空题
1、(1)见解析;(2)120°;(3)
【分析】
(1)根据旋转的性质和全等三角形的判定解答即可;
(2)根据等腰三角形的性质求得∠ABD=90°-,∠BAE=+30°,根据菱形的邻角互补求解即可;
(3)连接AF,根据菱形的性质和全等三角形的性质可求得∠FAC=45°,∠FCA=30°,过F作FG⊥AC于G,设FG=x,根据等腰直角三角形的性质和含30°角的直角三角形的性质求解即可.
【详解】
解:(1)由旋转得:AB=AD,AC=AE,∠BAD=∠CAE=,
∵AB=AC,
∴AB=AC=AD=AE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
(2)∵AB=AD,∠BAD=,∠BAC=30°,
∴∠ABD=(180°-∠BAD)÷2=(180°-)÷2=90°-,∠BAE=+30°,
∵四边形ABFE是菱形,
∴∠BAE+∠ABD=180°,即+30°+90°-=180°,
解得:=120°;
(3)连接AF,
∵四边形ABFE是菱形,∠BAE=+30°=150°,
∴∠BAF=∠BAE=75°,又∠BAC=30°,
∴∠FAC=75°-30°=45°,
∵△ABD≌△ACE,
∴∠FCA=∠ABD=90°-=30°,
过F作FG⊥AC于G,设FG=x,
在Rt△AGF中,∠FAG=45°,∠AGF=90°,
∴∠AFG=∠FAG=45°,
∴△AGF是等腰直角三角形,
∴AG=FG=x,
在在Rt△AGF中,∠FCG=30°,∠FGC=90°,
∴CF=2FG=2x,,
∵AC=AB=2,又AG+CG=AC,
∴,
解得:,
∴CF=2x= .
【点睛】
本题考查全等三角形的判定与性质、旋转的性质、菱形的性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、三角形的内角和定理、解一元一次方程等知识,熟练掌握相关知识的联系与运用是解答的关键.
2、##
【分析】
连接OA、OC,先求出∠ABC的度数,然后得到∠AOC,再由弧长公式即可求出答案.
【详解】
解:连接OA、OC,如图,
∵四边形ABCD是⊙O的内接四边形,∠D=110°,
∴,
∴,
∴;
故答案为:.
【点睛】
本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式.
3、②④
【分析】
将所给四个条件逐一判断即可得出结论.
【详解】
解:在中,
①当∠BAC > 60°时,若时,点E与点A重合,不符合题意,故①不满足;
②当∠ABC时,点E与点A重合,不符合题意,当∠ABC时,点E与点O不关于AD对称,当时,点E关于直线AD的对称点在线段OA上,
所以,当45° < ∠ABC < 60°时,点E关于直线AD的对称点在线段OA上,故②满足条件;
③当时,点E关于直线AD的对称点在线段OA上,故③不满足条件;
④当AB < DE < AB时,点E关于直线AD的对称点在线段OA上,故④满足条件;
所以,要使得与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是45° < ∠ABC < 60°或AB < DE < AB
故答案为②④
【点睛】
本题考查了圆周角定理,正确判断出每种情况是解答本题的关键.
4、6
【分析】
如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.
【详解】
解:如图,连接OA、OB、OC、OD、OE、OF.
∵正六边形ABCDEF,
∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,
∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,
∵的周长为,
∴的半径为,
正六边形的边长是6;
【点睛】
本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.
5、或
【分析】
如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.
【详解】
解:如图,连接 (即)分别在优弧与劣弧上,
PM,PN分别与⊙O相切于A,B两点,
故答案为:或
【点睛】
本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.
三、解答题
1、
(1)图见解析,点的坐标为
(2)图见解析,4
【分析】
(1)根据题意,腰长为无理数且为以AB为底的等腰三角形,只在第二象限,作图即可确定点,然后写出点的坐标即可;
(2)现确定旋转后的点,然后依次连接即可,根据旋转前后三角形的面积不变,利用表格及勾股定理确定三角形的底和高,即可得出面积.
(1)
解:如图所示,点的坐标为;
,为无理数,符合题意;
(2)
如图所示:点的坐标,点的坐标为,
∵旋转180°后的的面积等于的面积,
,
∴,
∴的面积为4.
【点睛】
题目主要考查等腰三角形的定义及旋转图形的作法,理解题意,熟练掌握在坐标系中旋转图形的作法是解题关键.
2、(1)见解析;(2)17
【分析】
(1)由旋转的性质可得CD=CE,∠DCE=90°=∠ACB,由“SAS”可证△ACD≌△BCE;
(2)由∠ACB=90°,AC=BC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BE=AD=5,∠CBE=∠CAD=45°,则∠ABE=∠ABC+∠CBE=90°,然后利用勾股定理求出BD的长即可得到答案.
【详解】
解:(1)证明:∵将线段CD绕点C按逆时针方向旋转90°得到线段CE,
∴CD=CE,∠DCE=90°=∠ACB,
∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS);
(2)∵∠ACB=90°,AC=BC,
∴∠CAB=∠CBA=45°,
∵△ACD≌△BCE,
∴BE=AD=5,∠CBE=∠CAD=45°,
∴∠ABE=∠ABC+∠CBE=90°,
∴,
∴AB=AD+BD=17.
【点睛】
本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键.
3、(1)见详解;(2)
【分析】
(1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;
(2)由题意易得,然后由(1)可知△ABD是等边三角形,进而问题可求解.
【详解】
(1)证明:∵AC是直径,点C是劣弧BD的中点,
∴AC垂直平分BD,
∴;
(2)解:∵,,
∴,
∵,
∴△ABD是等边三角形,
∵,
∴.
【点睛】
本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键.
4、
(1)8
(2)
(3)或.
【分析】
(1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=AC,由锐角三角函数和勾股定理可求解;
(2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;
(3)分两种情况讨论,由相似三角形和勾股定理可求解.
(1)
如图2,过点O作OH⊥AC于点H,
由垂径定理得:AH=CH=AC,
在Rt△OAH中,,
∴设OH=3x,AH=4x,
∵OH2+AH2=OA2,
∴(3x)2+(4x)2=52,
解得:x=±1,(x=﹣1舍去),
∴OH=3,AH=4,
∴AC=2AH=8;
(2)
如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,
∵∠DEO=∠AEC,
∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;
,
∴∠ACD≠∠DOE
∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,
∴当△DOE与△AEC相似时,∠DOE=∠A,
∴OD∥AC,
∴,
∵OD=OA=5,AC=8,
∴,
∴,
∵∠AGE=∠AHO=90°,
∴GE∥OH,
∴△AEG∽△AOH,
∴,
∴,
∴,
∴,,
在Rt△CEG中,;
(3)
当点E在线段OA上时,如图3,过点E作EG⊥AC于G,过点O作OH⊥AC于H,延长AO交⊙O于M,连接AD,DM,
由(1)可得 OH=3,AH=4,AC=8,
∵OE=1,
∴AE=4,ME=6,
∵EG∥OH,
∴△AEG∽△AOH,
∴,
∴AG=,EG=,
∴GC=,
∴EC===,
∵AM是直径,
∴∠ADM=90°=∠EGC,
又∵∠M=∠C,
∴△EGC∽△ADM,
∴,
∴,
∴AD=2;
当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,
同理可求EG=,AG=,AE=6,GC=,
∴EC===,
∵AM是直径,
∴∠ADM=90°=∠EGC,
又∵∠M=∠C,
∴△EGC∽△ADM,
∴,
∴,
∴AD=,
综上所述:AD的长是或
【点睛】
本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.
5、
(1)相切,见解析
(2)
【分析】
(1)连接OC、OD、AC,OC交AF于点M,根据AG=CG,CD⊥AB,可得,从而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求证;
(2)先证明四边形CMFH为矩形,可得OC⊥AF,CM=HF=2,从而得到AM=FM,进而得到OM=BF=2,可得到CM=OM,进而得到 OC=4,AM垂直平分OC,可证得△AOC为等边三角形,即可求解.
(1)
解: CH与⊙O相切.
理由如下:如图,连接OC、OD、AC,OC交AF于点M,
∵AG=CG,
∴∠ACG=∠CAG,
∴,
∵CD⊥AB,
∴,
∴,
∴OC⊥AF,
∵AB为直径,
∴∠AFB=90°,
∵BH⊥CH,
∴CH∥AF,
∴OC⊥CH,
∵OC为半径,
∴CH为⊙O的切线;
(2)
解:由(1)得:BH⊥CH,OC⊥CH,
∴OC∥BH,
∵CH∥AF,
∴四边形CMFH为平行四边形,
∵OC⊥CH,
∴∠OCH=90°,
∴四边形CMFH为矩形,
∴OC⊥AF,CM=HF=2,
∴AM=FM,
∵点O为AB的中点,
∴OM=BF=2,
∴CM=OM,
∴OC=4,AM垂直平分OC,
∴AC=AO,
而AO=OC,
∴AC=OC=OA,,
∴△AOC为等边三角形,
∴∠AOC=60°,
∵,
∴∠AOD=∠AOC=60°,
∴∠COD=120°,
∴弧CD的长度为.
【点睛】
本题主要考查了圆的基本性质,垂径定理,切线的判定,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键.
相关试卷
这是一份数学第24章 圆综合与测试同步练习题,共32页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试达标测试,共34页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试同步达标检测题,共33页。