|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年最新沪科版九年级数学下册第24章圆定向练习试卷(无超纲带解析)
    立即下载
    加入资料篮
    2021-2022学年最新沪科版九年级数学下册第24章圆定向练习试卷(无超纲带解析)01
    2021-2022学年最新沪科版九年级数学下册第24章圆定向练习试卷(无超纲带解析)02
    2021-2022学年最新沪科版九年级数学下册第24章圆定向练习试卷(无超纲带解析)03
    还剩30页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版第24章 圆综合与测试当堂检测题

    展开
    这是一份沪科版第24章 圆综合与测试当堂检测题,共33页。

    沪科版九年级数学下册第24章圆定向练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,是的直径,弦,垂足为,若,则( )

    A.5 B.8 C.9 D.10
    2、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )
    A.它们的开口方向相同 B.它们的对称轴相同
    C.它们的变化情況相同 D.它们的顶点坐标相同
    3、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )

    A. B. C. D.
    4、下列图形中,是中心对称图形,但不是轴对称图形的是( )
    A. B. C. D.
    5、平面直角坐标系中点关于原点对称的点的坐标是( )
    A. B. C. D.
    6、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).

    A.20° B.25° C.30° D.40°
    7、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )

    A. B. C. D.
    8、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=(  )

    A.10 B.2 C.2 D.4
    9、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )

    A.19° B.38° C.52° D.76°
    10、点P(3,﹣2)关于原点O的对称点的坐标是(  )
    A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在△ABC中,AB = AC,以AB为直径的圆O交BC边于点D.要使得圆O与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD > AB;④AB < DE < AB.
    2、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.
    3、如图,⊙O的半径为5cm,正六边形ABCDEF内接于⊙O,则图中阴影部分的面积为 ___.

    4、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.

    5、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F.
    (1)求的度数;
    (2)若,且,求DF的长.

    2、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)

    (1)画出关于原点对称的图形,并写出点的坐标;
    (2)画出绕点O逆时针旋转后的图形,并写出点的坐标;
    (3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)
    3、如图,在中,,,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G.

    (1)依题意补全图形;
    (2)求的度数;
    (3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明.
    4、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.

    (1)若,求的度数;
    (2)若,求的大小;
    (3)猜想CF,BF,AF之间的数量关系,并证明.
    5、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H.
    (1)当直线l在如图①的位置时
    ①请直接写出与之间的数量关系______.
    ②请直接写出线段BH,EH,CH之间的数量关系______.
    (2)当直线l在如图②的位置时,请写出线段BH,EH,CH之间的数量关系并证明;
    (3)已知,在直线l旋转过程中当时,请直接写出EH的长.


    -参考答案-
    一、单选题
    1、C
    【分析】
    连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得
    【详解】
    解:如图,连接,

    ∵是的直径,弦,

    设的半径为,则
    在中,,

    解得


    故选C
    【点睛】
    本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    2、B
    【分析】
    根据旋转的性质及抛物线的性质即可确定答案.
    【详解】
    抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.
    故选:B
    【点睛】
    本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.
    3、A
    【分析】
    连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
    【详解】
    解:连结OC,
    ∵以边上一点为圆心作,恰与边,分别相切于点A, ,
    ∴DC=AC,OC平分∠ACD,
    ∵,,
    ∴∠ACD=90°-∠B=60°,
    ∴∠OCD=∠OCA==30°,
    在Rt△ABC中,AC=ABtanB=3×,
    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
    ∴OD=OA=1,DC=AC=,
    ∴,,
    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
    ∴,
    S阴影=.
    故选择A.

    【点睛】
    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
    4、B
    【分析】
    根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
    【详解】
    解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
    B、是中心对称图形但不是轴对称图形,故符合题意;
    C、既不是轴对称图形也不是中心对称图形,故不符合题意;
    D、是轴对称图形但不是中心对称图形,故不符合题意;
    故选B.
    【点睛】
    本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
    5、B
    【分析】
    根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
    【详解】
    解:平面直角坐标系中点关于原点对称的点的坐标是
    故选B
    【点睛】
    本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.
    6、B
    【分析】
    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
    【详解】
    解:连接OA,如图,

    ∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴∠PAO=90°,
    ∵∠P=40°,
    ∴∠AOP=50°,
    ∵OA=OB,
    ∴∠B=∠OAB,
    ∵∠AOP=∠B+∠OAB,
    ∴∠B=∠AOP=×50°=25°.
    故选:B.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    7、C
    【分析】
    过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.
    【详解】
    解:如图,过点A作AC⊥x轴于点C,

    设 ,则 ,
    ∵ ,,
    ∴,
    ∵, ,
    ∴ ,
    解得: ,
    ∴ ,
    ∴ ,
    ∴点 ,
    ∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,
    ∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.
    故选:C
    【点睛】
    本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.
    8、D
    【分析】
    首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在Rt△B'C'C中利用勾股定理求解.
    【详解】
    解:∵在Rt△ABC中,AB=6,BC=8,
    ∴,
    由旋转性质可知,AB= AB'=6,BC= B'C'=8,
    ∴B'C=10-6=4,
    在Rt△B'C'C中,,
    故选:D.
    【点睛】
    本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.
    9、B
    【分析】
    连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
    【详解】
    解:连接 为的直径,




    为的切线,


    故选B
    【点睛】
    本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
    10、B
    【分析】
    根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.
    【详解】
    解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).
    故选:B.
    【点睛】
    本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.
    二、填空题
    1、②④
    【分析】
    将所给四个条件逐一判断即可得出结论.
    【详解】
    解:在中,
    ①当∠BAC > 60°时,若时,点E与点A重合,不符合题意,故①不满足;
    ②当∠ABC时,点E与点A重合,不符合题意,当∠ABC时,点E与点O不关于AD对称,当时,点E关于直线AD的对称点在线段OA上,
    所以,当45° < ∠ABC < 60°时,点E关于直线AD的对称点在线段OA上,故②满足条件;
    ③当时,点E关于直线AD的对称点在线段OA上,故③不满足条件;
    ④当AB < DE < AB时,点E关于直线AD的对称点在线段OA上,故④满足条件;
    所以,要使得与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是45° < ∠ABC < 60°或AB < DE < AB
    故答案为②④
    【点睛】
    本题考查了圆周角定理,正确判断出每种情况是解答本题的关键.
    2、六
    【分析】
    由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.
    【详解】
    解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:

    ∵半径与边长相等,
    ∴这个三角形是等边三角形,
    ∴正多边形的边数:360°÷60°=6,
    ∴这个正多边形是正六边形
    故答案为:六.
    【点睛】
    本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.
    3、
    【分析】
    根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.
    【详解】

    如图,连接BO,OC,OA,
    由题意得:△BOC,△AOB都是等边三角形,
    ∴∠AOB=∠OBC=60°,
    ∴OA∥BC,
    ∴,

    故答案为:.
    【点睛】
    本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出.
    4、
    【分析】
    连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
    【详解】
    解:如图所示,连接OB,交AC于点D,

    ∵四边形OABC为平行四边形,,
    ∴四边形OABC为菱形,
    ∴,,,
    ∵,
    ∴为等边三角形,
    ∴,
    ∴,
    在中,设,则,
    ∴,
    即,
    解得:或(舍去),
    ∴的长为:,
    故答案为:.
    【点睛】
    题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
    5、20
    【分析】
    先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.
    【详解】
    ∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,
    ∴∠ADC=∠D=90°,∠DAD′=α,
    ∵∠ABC=90°,
    ∴∠BAD’=180°-∠1=180°-110°=70°,
    ∴∠DAD′=90°-70°=20°,
    即α=20°.
    故答案为20.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    三、解答题
    1、(1)45°;(2)
    【分析】
    (1)根据旋转的性质得,,,,通过等量代换及三角形内角和得,根据四点共圆即可求得;
    (2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得.
    【详解】
    解:(1)由旋转可知:
    ,,,,
    ∴,,.
    由三角形内角和定理得,
    ∴点A,D,F,E共圆.
    ∴.
    (2)连接EB,

    ∵,
    ∴.
    ∵,
    ∴.
    又∵,,
    ∴.
    ∴,.
    ∴.
    在中,,,,
    ∵,
    ∴.
    【点睛】
    本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质.
    2、
    (1)见解析,;
    (2)见解析,
    (3)绕点O顺时针时针旋转
    【分析】
    (1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;
    (2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;
    (3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.
    (1)
    解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:
    (2)
    解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:
    (3)
    解:根据题意得:绕点O顺时针时针旋转后可直接得到.
    【点睛】
    本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.
    3、
    (1)见解析;
    (2)
    (3)
    【分析】
    (1)根据题意补全图形即可;
    (2)根据旋转的性质可得,,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明;
    (3)过点作,证明,进而根据勾股定理以及线段的转换即可得到
    (1)
    如图,
    (2)
    将线段AE绕点A逆时针旋转90°,得到线段AF,
    ,
    ,









    (3)

    证明如下,如图,过点作,


    又,












    【点睛】
    本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.
    4、(1)20°;(2);(3)AF= CF+BF,理由见解析
    【分析】
    (1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
    (2)同(1)求解即可;
    (3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
    【详解】
    解:(1)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
    ∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
    ∴,
    ∴∠CBF=∠ABE-∠ABC=20°;
    (2)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,,AC=AE,
    ∴ ,AB=AE,
    ∴,
    ∴;
    (3)AF= CF+BF,理由如下:
    如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
    ∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
    在△AEF和△ACF中,

    ∴△AEF≌△ACF(SAS),
    ∴∠AFE=∠AFC,
    ∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
    ∴∠BFD=∠ACD=60°,
    ∴∠AFE=∠AFC=60°,
    ∴∠BFC=120°,
    ∴∠BAC+∠BFC=180°,
    ∴∠ABF+∠ACF=180°,
    ∴∠ACG+∠ACF=180°,
    ∴F、C、G三点共线,
    ∴△AFG是等边三角形,
    ∴AF=GF=CF+CG=CF+BF.

    【点睛】
    本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
    5、(1)①;②;(2);证明见解析;(3)或.
    【分析】
    (1)①,根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CF⊥DE,得出CF平分∠ECD即可;
    ②,过点C作CG⊥BE于G,根据BC=EC,得出∠ECG=∠BCG=,根据∠ECH=∠HCD=,可得CG=HG,根据勾股定理在Rt△GHC中,,根据GE=,得出即可;
    (2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;
    (3)或,根据,分两种情况,当∠ABE=90°-15°=75°时,BC=CE,先证△CDE为等边三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根据CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根据勾股定理HE=,当∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根据30°直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可.
    【详解】
    解:(1)①
    ∵CE=BC,四边形ABCD为正方形,
    ∴BC=CD=CE,
    ∵CF⊥DE,
    ∴CF平分∠ECD,
    ∴∠ECH=∠HCD,
    故答案为:∠ECH=∠HCD;

    ②,过点C作CG⊥BE于G,
    ∵BC=EC,
    ∴∠ECG=∠BCG=,
    ∵∠ECH=∠HCD=,
    ∴∠GCH=∠ECG+∠ECF=+,
    ∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,
    ∴CG=HG,
    在Rt△GHC中,
    ∴,
    ∵GE=,
    ∴GH=GE+EH=,
    ∴,
    ∴,
    ∴,
    故答案是:;

    (2),
    证明:过点C作交BE于点M,

    则,
    ∴⁰,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∴,,
    ∴是等腰直角三角形,
    ∴,
    ∵,
    ∴,
    (3)或,
    ∵,分两种情况,
    当∠ABE=90°-15°=75°时,
    ∵BC=CE,
    ∴∠CBE=∠CEB=15°,
    ∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,
    ∴∠DCE=∠BCE-∠BCD=150°=90°=60°,
    ∵CE=CD,
    ∴△CDE为等边三角形,
    ∴DE=CD=AB=2,∠DEC=60°,
    ∴∠FEH=∠DEC=∠CEB=60°-15°=45°,
    ∵CF⊥DE,
    ∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,
    ∴EF=HF=1,
    ∴HE=,

    当∠ABE=90°+15°=105°,
    ∵BC=CE,∠CBE=∠CEB=15°,
    ∴∠BCE=180°-∠CBE-∠CEB=150°,
    ∴∠DCE=360°-∠DCB-∠BCE=120°,
    ∵CE=BC=CD,CH⊥DE,
    ∴∠FCE=,
    ∴∠FEC=180°-∠CFE-∠FCE=30°,
    ∴CF=,
    ∴EF=,
    ∵∠HEF=∠CEB+∠CEF=15°+30°=45°,
    ∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,
    ∴FH=FE,
    ∴EH=,
    ∴或.

    【点睛】
    本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键.

    相关试卷

    数学九年级下册第24章 圆综合与测试课后练习题: 这是一份数学九年级下册第24章 圆综合与测试课后练习题,共34页。

    沪科版九年级下册第24章 圆综合与测试课后复习题: 这是一份沪科版九年级下册第24章 圆综合与测试课后复习题,共36页。

    初中沪科版第24章 圆综合与测试当堂检测题: 这是一份初中沪科版第24章 圆综合与测试当堂检测题,共36页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map