终身会员
搜索
    上传资料 赚现金

    2021-2022学年最新沪科版九年级数学下册第24章圆定向攻克试题

    立即下载
    加入资料篮
    2021-2022学年最新沪科版九年级数学下册第24章圆定向攻克试题第1页
    2021-2022学年最新沪科版九年级数学下册第24章圆定向攻克试题第2页
    2021-2022学年最新沪科版九年级数学下册第24章圆定向攻克试题第3页
    还剩25页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试当堂达标检测题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共28页。


    沪科版九年级数学下册第24章圆定向攻克

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、图2是由图1经过某一种图形的运动得到的,这种图形的运动是(   

    A.平移 B.翻折 C.旋转 D.以上三种都不对

    2、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是(   

    A.  B. 

    C.  D.

    3、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是(   

    A.1 B. C. D.2

    4、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是(  

    A.它们的开口方向相同 B.它们的对称轴相同

    C.它们的变化情況相同 D.它们的顶点坐标相同

    5、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是(  )

    A..等腰三角形 B.等边三角形

    C..直角三角形 D..等腰直角三角形

    6、下列图形中,可以看作是中心对称图形的是(   

    A. B.

    C. D.

    7、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是(   

    A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径

    C.直径是最长的弦 D.垂直于弦的直径平分这条弦

    8、在△ABC中,,点OAB中点.以点C为圆心,CO长为半径作⊙C,则⊙CAB的位置关系是(   

    A.相交 B.相切

    C.相离 D.不确定

    9、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为(   

    A.25° B.80° C.130° D.100°

    10、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为(   

    A.36 cm B.27 cm C.24 cm D.15 cm

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.

    2、如图,PAPB分别与⊙O相切于AB两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°

    3、边长为2的正三角形的外接圆的半径等于___.

    4、两直角边分别为6、8,那么的内接圆的半径为____________.

    5、如图,点ABC在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.

    三、解答题(5小题,每小题10分,共计50分)

    1、请阅读下列材料,并完成相应的任务:

    阿基米德是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Binmi (973-1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi详本出版了俄文版《阿基米德全集》.第一题就是阿基米德折弦定理.阿基米德折弦定理:如图1,的两条弦(即折线是圆的一条折弦),的中点,则从所作垂线的垂足是折弦的中点,即

    下面是运用“截长法”证明的部分证明过程.

    证明:如图2,在上截取,连接

    的中点,

    任务:

    (1)请按照上面的证明思路,写出该证明部分;

    (2)填空:如图3,已知等边内接于上一点,于点,则的周长是_________.

    2、在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形MN的“近距离”,记为d(MN),特别地,若图形MN有公共点,规定d(MN)=0.已知:如图,点A(,0),B(0,).

    (1)如果⊙O的半径为2,那么d(A,⊙O)=        d(B,⊙O)=       

    (2)如果⊙O的半径为r,且d(⊙O,线段AB)=0,求r的取值范围;

    (3)如果C(m,0)是x轴上的动点,⊙C的半径为1,使d(⊙C,线段AB)<1,直接写出m的取值范围.

    3、如图,在⊙O中,点E是弦CD的中点,过点OE作直径ABAEBE),连接BD,过点CCFBDAB于点G,交⊙O于点F,连接AF.求证:AGAF

    4、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于BC两点,点B的坐标为,点D上,且,求OA的半径和圆心A的坐标.

    元元的做法如下,请你帮忙补全解题过程:

    解:如图2,连接BC.作AELOBEAFOCF

    (依据是   

    (依据是    ).

    ,.

    BC的直径(依据是    ).

    A的坐标为    的半径为   

    5、如图,已知等边内接于⊙OD的中点,连接DB,DC,过点CAB的平行线,交BD的延长线于点E.

    (1)求证:CE是⊙O的切线;

    (2)若AB的长为6,求CE的长.

     

    -参考答案-

    一、单选题

    1、C

    【详解】

    解:根据图形可知,这种图形的运动是旋转而得到的,

    故选:C.

    【点睛】

    本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.

    2、C

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    A.是轴对称图形,不是中心对称图形,故此选项不合题意;

    B.不是轴对称图形,是中心对称图形,故此选项不符合题意;

    C.是轴对称图形,也是中心对称图形,故此选项合题意;

    D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.

    故选:C.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    3、B

    【分析】

    利用三角函数及勾股定理求出BC、AB,连接CD,过点CCEABE,利用,求出BE,根据垂径定理求出BD即可得到答案.

    【详解】

    解: 在Rt中,

    BC=3,

    连接CD,过点CCEABE

    解得

    CB=CDCEAB

    故选:B

    【点睛】

    此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.

    4、B

    【分析】

    根据旋转的性质及抛物线的性质即可确定答案.

    【详解】

    抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.

    故选:B

    【点睛】

    本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.

    5、D

    【分析】

    根据旋转的性质推出相等的边CECF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.

    【详解】

    解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,

    ∴∠ECF=90°,CECF

    ∴△CEF是等腰直角三角形,

    故选:D

    【点睛】

    本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.

    6、C

    【分析】

    根据中心对称图形的定义进行逐一判断即可.

    【详解】

    解:A、不是中心对称图形,故此选项不符合题意;

    B、不是中心对称图形,故此选项不符合题意;

    C、是中心对称图形,故此选项符合题意;

    D、不是中心对称图形,故此选项不符合题意;

    故选C.

    【点睛】

    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:

    把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

    7、A

    【分析】

    定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.

    【详解】

    A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;

    B、C选项,根据圆的定义可以得到;

    D选项,是垂径定理;

    故选:A

    【点睛】

    本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.

    8、B

    【分析】

    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断的切线,进而可得⊙CAB的位置关系

    【详解】

    解:连接,

    ,点OAB中点.

    CO为⊙C的半径,

    的切线,

    CAB的位置关系是相切

    故选B

    【点睛】

    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.

    9、D

    【分析】

    根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.

    【详解】

    解:∵四边形ABCD内接于⊙O

    ∴∠B+∠ADC=180°,

    ∵∠ADC=130°,

    ∴∠B=50°,

    由圆周角定理得,∠AOC=2∠B=100°,

    故选:D.

    【点睛】

    本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.

    10、C

    【分析】

    连接,过点于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.

    【详解】

    解:连接,过点于点,交于点,如图所示:

    的直径为

    中,

    即水的最大深度为

    故选:C.

    【点睛】

    本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.

    二、填空题

    1、

    【分析】

    设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.

    【详解】

    解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为

    根据题意可得:

    解得:

    故答案是:

    【点睛】

    本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.

    2、

    【分析】

    连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB

    【详解】

    解:连接,如图,

    PAPB分别与⊙O相切

    故答案为:

    【点睛】

    本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.

    3、

    【分析】

    过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.

    【详解】

    如图所示,是正三角形,故O的中心,

    ∵正三角形的边长为2,OEAB

    由勾股定理得:

    (负值舍去).

    故答案为:

    【点睛】

    本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.

    4、5

    【分析】

    直角三角形外接圆的直径是斜边的长.

    【详解】

    解:由勾股定理得:AB==10,

    ∵∠ACB=90°,

    AB是⊙O的直径,

    ∴这个三角形的外接圆直径是10,

    ∴这个三角形的外接圆半径长为5,

    故答案为:5.

    【点睛】

    本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.

    5、

    【分析】

    连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.

    【详解】

    解:如图所示,连接OB,交AC于点D

    ∵四边形OABC为平行四边形,

    ∴四边形OABC为菱形,

    为等边三角形,

    中,设,则

    解得:(舍去),

    的长为:

    故答案为:

    【点睛】

    题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.

    三、解答题

    1、

    (1)证明见解析;

    (2)

    【分析】

    (1)首先证明,进而得出,再利用等腰三角形的性质得出,即可得出答案;

    (2)首先证明,进而得出,以及,进而求出的长即可得出答案.

    (1)

    证明:如图2,在上截取,连接

    的中点,

    (2)

    解:如图3,截取,连接

    由题意可得:

    ,则

    故答案为:

    【点睛】

    此题主要考查了圆与三角形综合,涉及了圆周角定理、全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键.

    2、(1)0,;(2);(3)

    【分析】

    (1)根据新定义,即可求解;

    (2)过点OODAB于点D,根据三角形的面积,可得,再由d(⊙O,线段AB)=0,可得当⊙O的半径等于OD时最小,当⊙O的半径等于OB时最大,即可求解;

    (3)过点CCNAB于点N ,利用锐角三角函数,可得∠OAB=60°,然后分三种情况:当点C在点A的右侧时,当点C与点A重合时,当点C在点A的左侧时,即可求解.

    【详解】

    解:(1)∵⊙O的半径为2,A(,0),B(0,).

    ∴点A在⊙O上,点B在⊙O外,

    dA,⊙O)=

    dB,⊙O)=

    (2)过点OODAB于点D

    ∵点A(,0),B(0,).

    d(⊙O,线段AB)=0,

    ∴当⊙O的半径等于OD时最小,当⊙O的半径等于OB时最大,

    r的取值范围是

    (3)如图,过点CCNAB于点N

    ∵点A(,0),B(0,).

    ∴∠OAB=60°,

    C(m,0),

    当点C在点A的右侧时,

    d(⊙C,线段AB)<1,⊙C的半径为1,

    ,解得:

    当点C与点A重合时,

    此时d(⊙C,线段AB)=0,

    当点C在点A的左侧时,

    ,解得:

    【点睛】

    本题主要考查了点与圆的位置关系,点与直线的位置关系,理解新定义,熟练掌握点与圆的位置关系,点与直线的位置关系是解题的关键.

    3、见解析

    【分析】

    由题意易得ABCD,则有,由平行线的性质可得,然后可得,进而问题可求证.

    【详解】

    证明:∵AB为⊙O的直径,点E是弦CD的中点,

    ABCD

    CFBD

    【点睛】

    本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键.

    4、垂径定理,圆周角定理,圆周角定理,(1,),2

    【分析】

    根据垂径定理,圆周角定理依次分析解答.

    【详解】

    解:如图2,连接BC.作AEOBEAFOCF

    (依据是垂径定理)

    (依据是圆周角定理).

    ,.

    BC的直径(依据是圆周角定理).

    A的坐标为(1,),的半径为2,

    故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2.

    【点睛】

    此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键.

    5、(1)见解析;(2)3

    【分析】

    (1)由题意连接OCOB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;

    (2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.

    【详解】

    解:(1)证明:如图连接OC、OB

    是等边三角形

     

     

    又 ∵

    与⊙O相切;

     (2)∵四边形ABCD是⊙O的内接四边形,

    D的中点,

       

    【点睛】

    本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.

     

    相关试卷

    沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共31页。

    数学九年级下册第24章 圆综合与测试复习练习题:

    这是一份数学九年级下册第24章 圆综合与测试复习练习题,共27页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试精练:

    这是一份沪科版九年级下册第24章 圆综合与测试精练,共35页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map