数学九年级下册第24章 圆综合与测试练习
展开
这是一份数学九年级下册第24章 圆综合与测试练习,共28页。试卷主要包含了如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是( )A. B.C. D.2、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是( )A. B. C. D.3、点P(3,﹣2)关于原点O的对称点的坐标是( )A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)4、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为( ) A.70° B.50° C.20° D.40°5、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径C.直径是最长的弦 D.垂直于弦的直径平分这条弦6、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为( )A.8 B. C. D.7、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )A.3 B.4 C.5 D.68、下列汽车标志中既是轴对称图形又是中心对称图形的是( )A. B. C. D.9、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为( )A.5厘米 B.4厘米 C.厘米 D.厘米10、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A.3 B.4 C.5 D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.2、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.3、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.4、如图,四边形ABCD内接于圆,E为CD延长线上一点, 图中与∠ADE相等的角是 _________ .5、如图,在中,,分别以、、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当,时,则阴影部分的面积为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,内接于,BC是的直径,D是AC延长线上一点.(1)请用尺规完成基本作图:作出的角平分线交于点P.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,过点P作,垂足为E.则PE与有怎样的位置关系?请说明理由.2、如图,在中,,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F.(1)求的度数;(2)若,且,求DF的长.3、如图,正方形ABCD是半径为R的⊙O内接四边形,R=6,求正方形ABCD的边长和边心距.4、如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.(1)求∠ABD的度数;(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;(3)在(2)的条件下,求的长.5、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,将△ABC绕点B按顺时针方向旋转.(1)当C转到AB边上点C′位置时,A转到A′,(如图1所示)直线CC′和AA′相交于点D,试判断线段AD和线段A′D之间的数量关系,并证明你的结论.(2)将Rt△ABC继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt△ABC旅转至A、C′、A′三点在一条直线上时,请直接写出此时旋转角α的度数. -参考答案-一、单选题1、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.2、C【分析】如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论.【详解】解:如图,过点C作 CT⊥AB 于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,由题意可得AB垂直平分线段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH⩾CT,∴CT⩽6+3=9,∴CT的最大值为9,∴△ABC的面积的最大值为=27,故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.3、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).故选:B.【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.4、D【分析】首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.【详解】解:连接OA,OB,∵PA,PB为⊙O的切线,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故选:D.【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.5、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.6、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.【详解】解:如图所示,连接CP,∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故选C.【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.7、B【分析】由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.【详解】∵PA,PB是⊙O的切线,A,B为切点,∴,,∴在和中,,∴,∴.故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.8、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、D【分析】根据题意先求出弦AC的长,再过点O作OB⊥AC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中根据勾股定理求出r的值即可.【详解】解:∵杯口外沿两个交点处的读数恰好是2和8,∴AC=8-2=6厘米,过点O作OB⊥AC于点B,则AB=AC=×6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=厘米.故选:D.【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.【详解】由旋转的性质得:,,是等边三角形,,,.故选:A.【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.二、填空题1、【分析】先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【详解】解:∵BC是圆O的切线,∴∠OBC=90°,∵四边形ABCO是平行四边形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案为:22.5°.【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.2、【分析】连接OC交AB于点D,再连接OA.根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.【详解】解:如下图所示,连接OC交AB于点D,再连接OA.∵折叠后弧的中点与圆心重叠,∴,OD=CD.∴AD=BD.∵圆形纸片的半径为10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案为:.【点睛】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.3、六【分析】由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.【详解】解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:∵半径与边长相等,∴这个三角形是等边三角形,∴正多边形的边数:360°÷60°=6,∴这个正多边形是正六边形故答案为:六.【点睛】本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.4、∠ABC【分析】根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果.【详解】解:∵四边形ABCD内接于圆,∴,∵E为CD延长线上一点,∴,∴,故答案为:.【点睛】题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.5、【分析】根据阴影部分面积等于以为直径的2 个半圆的面积加上减去为半径的半圆面积即.【详解】解:在中,,,.故答案为:【点睛】本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.三、解答题1、(1)作图见解析(2)是的切线,理由见解析【分析】(1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点.(2)如图2所示,连接,由题意可知,,,,;在四边形中,,,求出,得出,由于是半径,故有是的切线.(1)解:如图1所示(2)解:是的切线.如图2所示,连接由题意可知,,,,在四边形中∵∴∴又∵是半径∴是的切线【点睛】本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点.解题的关键在于将知识综合灵活运用.2、(1)45°;(2)【分析】(1)根据旋转的性质得,,,,通过等量代换及三角形内角和得,根据四点共圆即可求得;(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得.【详解】解:(1)由旋转可知:,,,,∴,,.由三角形内角和定理得,∴点A,D,F,E共圆.∴.(2)连接EB,∵,∴.∵,∴.又∵,,∴.∴,.∴.在中,,,,∵,∴.【点睛】本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质.3、边长为,边心距为【分析】过点O作OE⊥BC,垂足为E,利用圆内接四边形的性质求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根据勾股定理求出OE、BE即可.【详解】解:过点O作OE⊥BC,垂足为E,∵正方形ABCD是半径为R的⊙O内接四边形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6, ∴BE=OE. 在Rt△OBE中,∠BEO=90°,由勾股定理可得∵OE2+BE2=OB2,∴OE2+BE2=36,∴OE= BE=, ∴BC=2BE=, 即半径为6的圆内接正方形ABCD的边长为,边心距为.【点睛】本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于.4、(1);(2);(3)【分析】(1)如图,过作 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;(2)先求解 再结合(1)的结论可得答案;(3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.【详解】解:(1)如图,过作 垂足分别为 连接 四边形为矩形,由勾股定理可得: 而 四边形为正方形, 而 (2)如图,过作 垂足分别为 由(1)得:四边形为正方形, OA=2,∠OAB=15°, (3)如图,连接 【点睛】本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.5、(1),证明见解析(2)成立,证明见解析(3)【分析】(1)设,先根据直角三角形的性质可得,再根据旋转的性质可得,然后根据等边三角形的判定与性质可得,,都是等边三角形,从而可得,由此即可得出结论;(2)在上截取,连接,先根据旋转的性质可得,从而可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,,然后根据三角形的外角性质可得,最后根据等腰三角形的判定可得,由此即可得出结论;(3)如图(见解析),先根据旋转的性质可得,再根据直角三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据旋转角即可得.(1)解:,证明如下:设,在中,,,由旋转的性质得:,,和都是等边三角形,,,是等边三角形,,;(2)解:成立,证明如下:如图,在上截取,连接,由旋转的性质得:,,,在和中,,,,,,;(3)解:如图,当点三点在一条直线上时,由旋转的性质得:,,在和中,,,,则旋转角.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共31页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时训练,共26页。试卷主要包含了在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试练习题,共26页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。