终身会员
搜索
    上传资料 赚现金

    2021-2022学年最新沪科版九年级数学下册第24章圆专题攻克试题(含答案及详细解析)

    立即下载
    加入资料篮
    2021-2022学年最新沪科版九年级数学下册第24章圆专题攻克试题(含答案及详细解析)第1页
    2021-2022学年最新沪科版九年级数学下册第24章圆专题攻克试题(含答案及详细解析)第2页
    2021-2022学年最新沪科版九年级数学下册第24章圆专题攻克试题(含答案及详细解析)第3页
    还剩37页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第24章 圆综合与测试同步训练题

    展开

    这是一份初中第24章 圆综合与测试同步训练题,共40页。试卷主要包含了等边三角形,下列判断正确的个数有等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆专题攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列图形中,是中心对称图形也是轴对称图形的是(  )
    A. B. C. D.
    2、如图,AB 为⊙O 的直径,弦 CD^AB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )

    A.3 B.2 C.1 D.
    3、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )

    A. B.
    C. D.
    4、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )

    A.1 B.2 C.3 D.4
    5、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
    A.2个 B.3个 C.4个 D.5个
    6、下列判断正确的个数有( )
    ①直径是圆中最大的弦;
    ②长度相等的两条弧一定是等弧;
    ③半径相等的两个圆是等圆;
    ④弧分优弧和劣弧;
    ⑤同一条弦所对的两条弧一定是等弧.
    A.1个 B.2个 C.3个 D.4个
    7、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )

    A.22.5° B.45° C.90° D.67.5°
    8、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12
    9、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )

    A.1cm B.2cm C.2cm D.4cm
    10、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )

    A.105° B.120° C.135° D.150°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,AB是半圆O的直径,点D在半圆O上,,,C是弧BD上的一个动点,连接AC,过D点作于H.连接BH,则在点C移动的过程中,线段BH的最小值是______.

    2、如图,已知,外心为,,,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是______.

    3、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,
    问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.

    4、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.

    5、如图,在平行四边形中,,,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留)

    三、解答题(5小题,每小题10分,共计50分)
    1、在平面直角坐标系xOy中,⊙O的半径为1.
    对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦A′B′,则称线段AB是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.
    (1)如图,线段CD,EF,GH中是⊙O的以直线l为对称轴的“反射线段”有    ;
    (2)已知A点坐标为(0,2),B点坐标为(1,1),
    ①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标.
    ②若将“反射线段”AB沿直线y=x的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为yM,求S.
    (3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.
    (4)已知点M,N是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围.

    2、如图①,在Rt△ABC中,∠BAC = 90°,AB = k·AC,△ADE是由△ABC绕点A逆时针旋转某个角度得到的,BC与DE交于点F,直线BD与EC交于点G
    (1)求证:BD = k·EC;
    (2)求∠CGD的度数;
    (3)若k = 1(如图②),求证:A,F,G三点在同一直线上.

    3、如图1,BC是⊙O的直径,点A,P在⊙O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQ⊥AP,交PC 的延长线于点Q,AQ交⊙O于点D,已知AB=3,AC=4.

    (1)求证:△APQ∽△ABC.
    (2)如图2,当点C为的中点时,求AP的长.
    (3)连结AO,OD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.
    4、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.

    (1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE.
    ①求证:BE平分∠AEC.
    ②取BC的中点P,连接PH,求证:PHCG.
    ③若BC=2AB=2,求BG的长.
    (2)若点A,E,D第二次在同一直线上,BC=2AB=4,直接写出点D到BG的距离.
    5、在等边中,将线段AB绕点A顺时针旋转得到线段AD.

    (1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的α的取值范围;
    (2)在(1)的条件下连接BD,交CA的延长线于点F.
    ①依题意补全图形;②用等式表示线段AE,AF,CE之间的数量关系,并证明.

    -参考答案-
    一、单选题
    1、C
    【分析】
    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故B选项不符合题意;
    C、既是轴对称图形,又是中心对称图形,故C选项符合题意;
    D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.
    故选:C.
    【点睛】
    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    2、B
    【分析】
    连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
    【详解】
    解:连接OC,如图

    ∵AB 为⊙O 的直径,CD^AB,垂足为点 E,CD=8,
    ∴,
    ∵,
    ∴,
    ∴;
    故选:B.
    【点睛】
    本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
    3、A
    【分析】
    设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.
    【详解】
    解:设正六边形的边长为1,当在上时,
    过作于 而




    当在上时,延长交于点 过作于

    同理:
    则为等边三角形,



    当在上时,连接

    由正六边形的性质可得:

    由正六边形的对称性可得: 而


    由正六边形的对称性可得:在上的图象与在上的图象是对称的,
    在上的图象与在上的图象是对称的,
    所以符合题意的是A,
    故选A
    【点睛】
    本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.
    4、B
    【分析】
    由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.
    【详解】
    由题意以及旋转的性质知AD=AB,∠BAD=60°
    ∴∠ADB=∠ABD
    ∵∠ADB+∠ABD+∠BAD=180°
    ∴∠ADB=∠ABD=60°
    故为等边三角形,即AB= AD =BD=2
    则CD=BC-BD=4-2=2
    故选:B.
    【点睛】
    本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.
    5、A
    【分析】
    根据轴对称图形与中心对称图形的概念进行判断.
    【详解】
    解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
    等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
    共2个既是轴对称图形又是中心对称图形.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    6、B
    【详解】
    ①直径是圆中最大的弦;故①正确,
    ②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确
    ③半径相等的两个圆是等圆;故③正确
    ④弧分优弧、劣弧和半圆,故④不正确
    ⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.
    综上所述,正确的有①③
    故选B
    【点睛】
    本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.
    7、B
    【分析】
    根据同弧所对的圆周角是圆心角的一半即可得.
    【详解】
    解:∵,
    ∴,
    ∴,
    故选:B.
    【点睛】
    题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.
    8、D
    【分析】
    连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
    【详解】
    解:连接OB,OC,

    ∵∠BAC=30°,
    ∴∠BOC=60°.
    ∵OB=OC,BC=6,
    ∴△OBC是等边三角形,
    ∴OB=BC=6.
    ∴⊙O的直径等于12.
    故选:D.
    【点睛】
    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
    9、D
    【分析】
    根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.
    【详解】
    解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于

    设半径为r,即OA=OB=AB=r,
    OM=OA•sin∠OAB=,
    ∵圆O的内接正六边形的面积为(cm2),
    ∴△AOB的面积为(cm2),
    即,

    解得r=4,
    故选:D.
    【点睛】
    本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.
    10、B
    【分析】
    由题意易得,然后根据三角形外角的性质可求解.
    【详解】
    解:由旋转的性质可得:,
    ∴;
    故选B.
    【点睛】
    本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
    二、填空题
    1、##
    【分析】
    连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、、三点共线时,最小;求出,在中,,所以,即为所求.
    【详解】
    解:连接,取的中点,连接,


    点在以为圆心,为半径的圆上,
    当、、三点共线时,最小,
    是直径,

    ,,
    ,,
    在中,,

    故答案为:.
    【点睛】
    本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.
    2、
    【分析】
    由与是等腰直角三角形,得到,,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,,得到,如图,当时,的值最小,解直角三角形即可得到结论.
    【详解】
    解:与是等腰直角三角形,


    在与中,

    ≌,



    在以为直径的圆上,
    的外心为,,

    如图,当时,的值最小,



    ,,

    则的最小值是,
    故答案为:.

    【点睛】
    本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.
    3、
    【分析】
    如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.
    【详解】
    解:如图,

    ∵四边形CDEF为正方形,
    ∴∠D=90°,CD=DE,
    ∴CE是直径,∠ECD=45°,
    根据题意得:AB=2.5, ,
    ∴ ,
    ∴ ,
    即此斛底面的正方形的边长为 尺.
    故答案为:
    【点睛】
    本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.
    4、
    【分析】
    连接OC交AB于点D,再连接OA.根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.
    【详解】
    解:如下图所示,连接OC交AB于点D,再连接OA.

    ∵折叠后弧的中点与圆心重叠,
    ∴,OD=CD.
    ∴AD=BD.
    ∵圆形纸片的半径为10cm,
    ∴OA=OC=10cm.
    ∴OD=5cm.
    ∴cm.
    ∴BD=cm.
    ∴cm.
    故答案为:.
    【点睛】
    本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.
    5、
    【分析】
    过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.
    【详解】
    解:过点C作于点H,

    在平行四边形中,


    平行四边形的面积为:,
    图中黑色阴影部分的面积为:

    故答案为:.
    【点睛】
    本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.
    三、解答题
    1、(1)EF、CD;(2)①;②;(3);(4)或
    【分析】
    (1)的半径为1,则的最长的弦长为2,根据两点的距离可得,进而即可求得答案;
    (2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得的坐标;②由①可得当时,yM,设当取得最大值时,过点作轴,根据题意,分别为沿直线y=x的方向向上平移一段距离S 后的对应点,则,根据余弦求得进而代入数值列出方程,解方程即可求得的最大值,进而求得的范围;
    (3)根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线,求得半径为,根据圆的面积公式进行计算即可;
    (4)根据(2)的方法找到所在的圆心,当M点在圆上运动一周时,如图,取的中点,的中点,即的中点在以为圆心,半径为的圆上运动,进而即可求得反射轴l与y轴交点的纵坐标的取值范围
    【详解】
    (1)的半径为1,则的最长的弦长为2
    根据两点的距离可得

    故符合题意的“反射线段”有EF、CD;
    故答案为:EF、CD
    (2)①如图,过点作轴于点,连接

    A点坐标为(0,2),B点坐标为(1,1),
    ,且,
    的半径为1,
    ,且
    线段AB是⊙O的以直线l为对称轴的“反射线段”,,

    ②由①可得当时,yM

    如图,设当取得最大值时,过点作轴,根据题意,分别为沿直线y=x的方向向上平移一段距离S 后的对应点,则,



    过中点,作直线交轴于点,则即为反射轴

    yM,





    解得(舍)

    (3)

    的半径为1,则是等边三角形,
    根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,
    反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线



    当M点在圆上运动一周时,求反射轴l未经过的区域的面积为.
    (4)如图,根据(2)的方法找到所在的圆心,



    ,是等腰直角三角形
    ,


    当M点在圆上运动一周时,如图,取的中点,的中点,
    是的中位线
    ,
    即的中点在以为圆心,半径为的圆上运动
    若MN是⊙O的以直线l为对称轴的“反射线段”,则为的切线
    设与轴交于点


    同理可得

    反射轴l与y轴交点的纵坐标的取值范围为或
    【点睛】
    本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.
    2、(1)见解析;(2)90°;(3)见解析
    【分析】
    (1)由旋转的性质可得对应边相等对应角相等,由相似三角形的判定得出△ABD∽△ACE,由相似三角形的性质即可得出结论 ;
    (2)由(1)证得△ABD∽△ACE,和等腰三角形的性质得出,进而推出,由四边形的内角和定理得出结论;
    (3)连接CD,由旋转的性质和等腰三角形的性质得出,CG=DG,FC=FD,由垂直平分线的判断得出A,F,G都在CD的垂直平分线上,进而得出结论.
    【详解】
    证明:(1)∵△ADE是由△ABC绕点A逆时针旋转某个角度得到的,
    ∴AB=AD,AC=AE,∠BAD=∠CAE,
    ∴,
    ∴△ABD∽△ACE,
    ∴,
    ∵AB = k·AC,
    ∴,
    ∴BD = k·EC;
    (2)由(1)证得△ABD∽△ACE,
    ∴,
    ∵AB=AD,AC=AE,∠BAC = 90°,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴∴在四边形ADGE中,,∠BAC = 90°,
    ∴∠CGD=360°-180°-90°=90°;
    (3)连接CD,如图:

    ∵△ADE是由△ABC绕点A逆时针旋转某个角度得到的,∠BAC = 90°,AB = k·AC,
    ∴当k = 1时,△ABC和△ADE为等腰直角三角形,
    ∴,
    ∴,
    ∴,∴CG=DG
    ∵,
    ∴,∴FC=FD,
    ∴点A、点G和点F在CD的垂直平分线上,
    ∴A,F,G三点在同一直线上.
    【点睛】
    本题考查了相似三角形的性质和判定,旋转的性质,等腰直角三角形的性质和判定,垂直平分线的判定等知识点,熟练掌握相似三角形的判定和垂直平分线的判定是解题的关键.
    3、(1)见解析;(2)(3)当,时,;当时,.
    【分析】
    (1)通过证,,即可得;
    (2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP.
    (3)分类讨论, ,,,三种情况讨论,再通过勾股定理和相似即可求解.
    【详解】
    证明:(1)∵AQ⊥AP

    ∵BC是⊙O的直径




    (2)如图,连接CD,PD

    ∵BC是⊙O的直径

    ∵AB=3,AC=4
    ∴利用勾股定理得:,即直径为5


    ∴DP是⊙O的直径,且DP=BC=5
    ∵点C为的中点
    ∴CD=PC


    ∴是等腰直角三角形
    ∴利用勾股定理得:,则
    ∵,



    ∴,即:



    ∴,即:

    (3)连接AO,OD,OP,CD,OD交AC于点M

    ∵(已证)
    ∴OD,OP共线,为⊙O的直径
    情况一:当时
    ∵,

    ∴AP=PC



    ∴即
    ∵AP=PC

    ∴在中,

    ∴在中,
    情况二:当时,



    同情况一:
    情况三:当时
    ∵,

    ∴,
    ∵OA=OD



    综上所述,当,时,;当时,.
    【点睛】
    本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.
    4、
    (1)①见解析;②见解析;③
    (2)
    【分析】
    (1)①根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;
    ②如图1,过点作的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;
    ③如图2,过点作的垂线,解直角三角形即可得到结论.
    (2)如图3,连接,,过作交的延长线于,交的延长线于,根据旋转的性质得到,,解直角三角形得到,,根据三角形的面积公式即可得到结论.
    (1)
    解:①证明:矩形绕着点按顺时针方向旋转得到矩形,


    又,


    平分;
    ②证明:如图1,过点作的垂线,

    平分,,,


    ,,,


    即点是中点,
    又点是中点,

    ③解:如图2,过点作的垂线,







    ,,

    (2)
    解:如图3,连接,,过作交的延长线于,交的延长线于,



    将矩形绕着点按顺时针方向旋转得到矩形,
    ,,
    点,,第二次在同一直线上,




    ,,
    ,,
    ,,

    【点睛】
    本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.
    5、(1);(2)①见解析;②AE=AF+CE,证明见解析.
    【分析】
    (1)根据“线段DA的延长线与线段BC相交于点E”可求解;
    (2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.
    【详解】
    (1)如图:AD只能在锐角∠EAF内旋转符合题意

    故α的取值范围为:;
    (2)补全图形如下:

    (3)AE=AF+CE,
    证明:在AE上截取AH=AF,由旋转可得:AB=AD,
    ∴∠D=∠ABF,
    ∵△ABC为等边三角形,
    ∴AB=AC,∠BAC=∠ACB=60°,
    ∴AD=AC,
    ∵∠DAF=∠CAH,
    ∴△AFD≌△AHC,
    ∴∠AFD=∠AHC,∠D=∠ACH,
    ∴∠AFB=∠CHE,
    ∵∠AFB+∠ABF=∠ACH+∠HCE=60°,
    ∴∠CHE+∠D=∠D+∠HCE=60°,
    ∴∠CHE=∠HCE,
    ∴CE=HE,
    ∴AE=AH+HE=AF+CE.
    【点睛】
    本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试课时练习:

    这是一份沪科版九年级下册第24章 圆综合与测试课时练习,共26页。

    沪科版九年级下册第24章 圆综合与测试课后练习题:

    这是一份沪科版九年级下册第24章 圆综合与测试课后练习题,共33页。试卷主要包含了将一把直尺,如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。

    初中沪科版第24章 圆综合与测试达标测试:

    这是一份初中沪科版第24章 圆综合与测试达标测试,共34页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map