终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新沪科版九年级数学下册第24章圆章节练习试题

    立即下载
    加入资料篮
    2021-2022学年最新沪科版九年级数学下册第24章圆章节练习试题第1页
    2021-2022学年最新沪科版九年级数学下册第24章圆章节练习试题第2页
    2021-2022学年最新沪科版九年级数学下册第24章圆章节练习试题第3页
    还剩27页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试课后测评

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试课后测评,共30页。
    沪科版九年级数学下册第24章圆章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,的直径,外一点,过的切线,切点为,连接,点右侧的半圆周上运动(不与重合),则的大小是(    A.19° B.38° C.52° D.76°2、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是(    A. B.1 C.2 D.3、如图,AB的直径,,劣弧BC的长是劣弧BD长的2倍,则AC的长为(    A. B. C.3 D.4、在△ABC中,,点OAB中点.以点C为圆心,CO长为半径作⊙C,则⊙CAB的位置关系是(    A.相交 B.相切C.相离 D.不确定5、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为(    A.4 B.6 C.8 D.106、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是(    A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径C.直径是最长的弦 D.垂直于弦的直径平分这条弦7、如图,在中,,将绕点C逆时针旋转90°得到,则的度数为(    A.105° B.120° C.135° D.150°8、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为(   A.3 B.2 C.1 D.9、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )A.1cm B.2cm C.2cm D.4cm10、下列说法正确的个数有(    ①方程的两个实数根的和等于1;②半圆是弧;③正八边形是中心对称图形;④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;⑤如果反比例函数的图象经过点,则这个函数图象位于第二、四象限.A.2个 B.3个 C.4个 D.5个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.2、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留3、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则______.4、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点ABC的距离均等于aa为常数).那么常数a的值等于________.5、如图,在矩形中,F中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结,则在点P从点B向点C的运动过程中,有下面四个结论:①当时,;②点E到边的距离为m;③直线一定经过点;④的最小值为.其中结论正确的是______.(填序号即可)三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)2、如图,在6×6的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,AB两点均在格点上.请按要求在图①,图②,图③中画图:(1)在图①中,画等腰△ABC,使AB为腰,点C在格点上.(2)在图②中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,CD两点均在格点上.(3)在图③中,画△ABC,使∠ACB=90°,面积为5,点C在格点上.3、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是     对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.4、如图,中,,连接,点MNP分别是的中点.(1)请你判断的形状,并证明你的结论.(2)将绕点A旋转,若,请直接写出周长的最大值与最小值.5、如图1,在中,,将边绕着点A逆时针旋转,得到线段,连接边于点E,过点C于点F,延长于点G(1)求证:(2)如图2,当时,求证:(3)如图3,当时,请直接写出的值. -参考答案-一、单选题1、B【分析】连接的直径,求解 结合的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 的直径, 的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.2、A【分析】CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据∠BCH=30°求解即可.【详解】解:如图,取BC的中点G,连接MG∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBMCH是等边△ABC的对称轴,HB=ABHB=BG又∵MB旋转到BNBM=BN在△MBG和△NBH中,∴△MBG≌△NBHSAS),MG=NH根据垂线段最短,MGCH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,MG=CG=HN=故选A.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.3、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接 是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.4、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断的切线,进而可得⊙CAB的位置关系【详解】解:连接,,点OAB中点.CO为⊙C的半径,的切线,CAB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.5、A【分析】根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB是⊙O的直径,∵∠BAC=30°,BC=2,故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.6、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.7、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.8、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.【详解】解:连接OC,如图AB 为⊙O 的直径,CDAB,垂足为点 ECD=8,故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出9、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过 设半径为r,即OA=OB=AB=rOM=OA•sin∠OAB=∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.10、B【分析】根据所学知识对五个命题进行判断即可.【详解】1、,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键.二、填空题1、【分析】设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.【详解】解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为根据题意可得:解得:故答案是:【点睛】本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.2、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算.【详解】解:依题意,n=r=2,∴扇形的弧长=故答案为:【点睛】本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=3、【分析】根据旋转角相等可得,进而勾股定理求解即可【详解】解:四边形是正方形绕点B顺时针方向旋转,能与重合,故答案为:【点睛】本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90°是解题的关键.4、5【分析】直接利用直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:根据直角三角形斜边上的中线等于斜边的一半,即可知道点到点ABC的距离相等,如下图:故答案是:5.【点睛】本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.5、②③④【分析】①当点的右边时,得出即可判断;②证明出即可判断;③根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;④当时,有最小值,计算即可.【详解】解:为等腰直角三角形,点的左边时,点的右边时,故①错误;过点中,根据旋转的性质得:故②正确;由①中得知为等腰直角三角形,也是等腰直角三角形,过点不管P上怎么运动,得到都是等腰直角三角形,即直线一定经过点故③正确;是等腰直角三角形,时,有最小值,为等腰直角三角形,由勾股定理:故④正确;故答案是:②③④.【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理.三、解答题1、(1)见解析,(2)见解析,(3)绕点O顺时针时针旋转【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到【点睛】本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.2、(1)见解析;(2)见解析;(3)见解析【分析】(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);(2)作边长为2,高为4的平行四边形即可;(3)根据(1)的结论,作BG边的中线,即可得解.【详解】解:(1)如图①中,△ABC即为所求作(答案不唯一);(2)如图②中,平行四边形ABCD即为所求作;(3)如图③中,△ABC即为所求作(答案不唯一);AB=AGBC=CGACBG∵△ABG的面积为∴△ABC的面积为5,且∠ACB=90°.【点睛】本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形.【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.4、(1)是等腰直角三角形,证明见解析(2)周长最小值为。最大值为【分析】(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.(1)连接BD,CE,如图, ∴BD=CE,∵点MNP分别是的中点//,PN//BD,PN=BD∴PM=PN, ∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90° 是等腰直角三角形;(2)由(1)知,是等腰直角三角形 的周长为 的周长为 当BD最小时即点D在AB上,此时周长最小,∵AB=8,AD=3∴BD的最小值为AB-AD=8-3=5周长最小为当点D在BA的延长线上时,BD最大,此时周长最大,∴BD=AB+AD=8+3=11周长最大为【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.5、(1)见解析(2)见解析(3)【分析】(1)由旋转的性质得AB=AD,所以,再根据三角形内角和定理可证明即可得到结论;(2)连接,根据ASA证明是等边三角形,从而得出,再运用AAS证明,由勾股定理可得出,从而 可得结论;(3)证明平分,作于点,根据勾股定理得,代入求值即可.(1)边绕着点逆时针旋转得到线段 ,且∠AEB=∠CEF(2)连接中,ASA).,即中,AAS).∴在中,是等边三角形.(3)平分于点∴在中,∴在中,【点睛】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形. 

    相关试卷

    2021学年第24章 圆综合与测试课堂检测:

    这是一份2021学年第24章 圆综合与测试课堂检测,共30页。

    初中第24章 圆综合与测试测试题:

    这是一份初中第24章 圆综合与测试测试题,共37页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课时作业:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时作业,共29页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map