2021学年第24章 圆综合与测试综合训练题
展开这是一份2021学年第24章 圆综合与测试综合训练题,共27页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,A,B,C是正方形网格中的三个格点,则是( )
A.优弧 B.劣弧 C.半圆 D.无法判断
2、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )
A.平移 B.翻折 C.旋转 D.以上三种都不对
3、下列四个图案中,是中心对称图形的是( )
A. B.
C. D.
4、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )
A.1 B.2 C.3 D.4
5、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )
A.4 B.6 C.8 D.10
6、如图,在中,,,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )
A. B. C. D.
7、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )
A.105° B.120° C.135° D.150°
8、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是( )
A.1 B. C. D.2
9、下列判断正确的个数有( )
①直径是圆中最大的弦;
②长度相等的两条弧一定是等弧;
③半径相等的两个圆是等圆;
④弧分优弧和劣弧;
⑤同一条弦所对的两条弧一定是等弧.
A.1个 B.2个 C.3个 D.4个
10、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )
A.它们的开口方向相同 B.它们的对称轴相同
C.它们的变化情況相同 D.它们的顶点坐标相同
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)
2、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点,,为的外接圆.
(1)点M的纵坐标为______;
(2)当最大时,点P的坐标为______.
3、如图,点C是半圆上一动点,以BC为边作正方形BCDE(使在正方形内),连OE,若AB=4cm,则OE的最大值为_____cm.
4、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.
5、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°
三、解答题(5小题,每小题10分,共计50分)
1、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.
(1)求证:AD∥EC;
(2)若AD=6,求线段AE的长.
2、如图,已知等边内接于⊙O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E.
(1)求证:CE是⊙O的切线;
(2)若AB的长为6,求CE的长.
3、如图,正方形ABCD是半径为R的⊙O内接四边形,R=6,求正方形ABCD的边长和边心距.
4、已知:如图,A为上的一点.
求作:过点A且与相切的一条直线.
作法:①连接OA;
②以点A为圆心,OA长为半径画弧,与的一个交点为B,作射线OB;
③以点B为圆心,OA长为半径画弧,交射线OB于点P(不与点O重合);
④作直线PA.
直线PA即为所求.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:连接BA.
由作法可知.
∴点A在以OP为直径的圆上.
∴( )(填推理的依据).
∵OA是的半径,
∴直线PA与相切( )(填推理的依据).
5、已知:如图,△ABC为锐角三角形,AB=AC
求作:一点P,使得∠APC=∠BAC
作法:①以点A为圆心, AB长为半径画圆;
②以点B为圆心,BC长为半径画弧,交⊙A于点C,D两点;
③连接DA并延长交⊙A于点P
点P即为所求
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明
证明:连接PC,BD
∵AB=AC,
∴点C在⊙A上
∵BC=BD,
∴∠_________=∠_________
∴∠BAC=∠CAD
∵点D,P在⊙A上,
∴∠CPD=∠CAD(______________________) (填推理的依据)
∴∠APC=∠BAC
-参考答案-
一、单选题
1、B
【分析】
根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.
【详解】
解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.
故选:B.
【点睛】
本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.
2、C
【详解】
解:根据图形可知,这种图形的运动是旋转而得到的,
故选:C.
【点睛】
本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.
3、A
【分析】
中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.
【详解】
解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,
故选:A.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.
4、B
【分析】
由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.
【详解】
由题意以及旋转的性质知AD=AB,∠BAD=60°
∴∠ADB=∠ABD
∵∠ADB+∠ABD+∠BAD=180°
∴∠ADB=∠ABD=60°
故为等边三角形,即AB= AD =BD=2
则CD=BC-BD=4-2=2
故选:B.
【点睛】
本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.
5、A
【分析】
根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
【详解】
解:∵AB是⊙O的直径,
∴ ,
∵∠BAC=30°,BC=2,
∴.
故选:A
【点睛】
本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
6、B
【分析】
阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.
【详解】
解:由图可知:阴影部分的面积=扇形扇形,
由旋转性质可知:,,
,,
在中,,,,
,,
有勾股定理可知:,
阴影部分的面积=扇形扇形
.
故选:B.
【点睛】
本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.
7、B
【分析】
由题意易得,然后根据三角形外角的性质可求解.
【详解】
解:由旋转的性质可得:,
∴;
故选B.
【点睛】
本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
8、B
【分析】
利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用,求出BE,根据垂径定理求出BD即可得到答案.
【详解】
解: 在Rt中,,
∴BC=3,,
连接CD,过点C作CE⊥AB于E,
∵,
∴,
解得,
∵CB=CD,CE⊥AB,
∴,
∴,
故选:B.
【点睛】
此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.
9、B
【详解】
①直径是圆中最大的弦;故①正确,
②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确
③半径相等的两个圆是等圆;故③正确
④弧分优弧、劣弧和半圆,故④不正确
⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.
综上所述,正确的有①③
故选B
【点睛】
本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.
10、B
【分析】
根据旋转的性质及抛物线的性质即可确定答案.
【详解】
抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.
故选:B
【点睛】
本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.
二、填空题
1、
【分析】
已知扇形的圆心角为,半径为2,代入弧长公式计算.
【详解】
解:依题意,n=,r=2,
∴扇形的弧长=.
故答案为:.
【点睛】
本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=.
2、5 (4,0)
【分析】
(1)根据点M在线段AB的垂直平分线上求解即可;
(2)点P在⊙M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可.
【详解】
解:(1)∵⊙M为△ABP的外接圆,
∴点M在线段AB的垂直平分线上,
∵A(0,2),B(0,8),
∴点M的纵坐标为:,
故答案为:5;
(2)过点,,作⊙M与x轴相切,则点M在切点处时,最大,
理由:
若点是x轴正半轴上异于切点P的任意一点,
设交⊙M于点E,连接AE,则∠AEB=∠APB,
∵∠AEB是ΔAE的外角,
∴∠AEB>∠AB,
∵∠APB>∠AB,即点P在切点处时,∠APB最大,
∵⊙M经过点A(0,2)、B(0,8),
∴点M在线段AB的垂直平分线上,即点M在直线y=5上,
∵⊙M与x轴相切于点P,MP⊥x轴,从而MP=5,即⊙M的半径为5,
设AB的中点为D,连接MD、AM,如上图,则MD⊥AB,AD=BD=AB=3,BM=MP=5,
而∠POD=90°,
∴四边形OPMD是矩形,从而OP=MD,
由勾股定理,得
MD=,
∴OP=MD=4,
∴点P的坐标为(4,0),
故答案为:(4,0).
【点睛】
本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.
3、
【分析】
如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,通过△OCD≌△OBE(SAS),可得OE=OD,通过旋转观察如图可知当DO⊥AB时,DO最长,此时OE最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MD=BM.再利用勾股定理计算即可.
【详解】
解:如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,
∵四边形BCDE是正方形,
∴∠BCD=∠CBE=90°,CD=BC=BE=DE,
∵OB=OC,
∴∠OCB=∠OBC,
∴∠BCD+∠OCB=∠CBE+∠OBC,即∠OCD=∠OBE,
∴△OCD≌△OBE(SAS),
∴OE=OD,
根据旋转的性质,观察图形可知当DO⊥AB时,DO最长,即OE最长,
∵∠MCB=∠MOB=×90°=45°,
∴∠DCM=∠BCM=45°,
∵四边形BCDE是正方形,
∴C、M、E共线,∠DEM=∠BEM,
在△EMD和△EMB中,
,
∴△MED≌△MEB(SAS),
∴DM=BM===2(cm),
∴OD的最大值=2+2,即OE的最大值=2+2;
故答案为:(2+2)cm.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论.
4、5
【分析】
直接利用直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
解:根据直角三角形斜边上的中线等于斜边的一半,
即可知道点到点A,B,C的距离相等,
如下图:
,
,
故答案是:5.
【点睛】
本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.
5、
【分析】
连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB
【详解】
解:连接,如图,
PA,PB分别与⊙O相切
故答案为:
【点睛】
本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.
三、解答题
1、(1)见解析;(2)6
【分析】
(1)连接OC,根据CE是⊙O的切线,可得∠OCE=,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE=,即可求证;
(2)过点A作AF⊥EC交EC于点F,由∠AOC=,OA=OC,可得∠OAC=,从而得到∠BAD=,再由AD∥EC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.
【详解】
证明:(1)连接OC,
∵CE是⊙O的切线,
∴∠OCE=,
∵∠ABC=,
∴∠AOC=2∠ABC=,
∵∠AOC+∠OCE=,
∴AD∥EC;
(2)解:过点A作AF⊥EC交EC于点F,
∵∠AOC=,OA=OC,
∴∠OAC=,
∵∠BAC=,
∴∠BAD=,
∵AD∥EC,
∴,
∵∠OCE=,∠AOC=,∠AFC=90°,
∴四边形OAFC是矩形,
∵OA=OC,
∴四边形OAFC是正方形,
∴,
∵,
∴,
在Rt△AFE中,,
∴AE=2AF=6.
【点睛】
本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.
2、(1)见解析;(2)3
【分析】
(1)由题意连接OC,OB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;
(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.
【详解】
解:(1)证明:如图连接OC、OB.
∵是等边三角形
∴
∵
∴
又 ∵
∴
∴
∴
∴与⊙O相切;
(2)∵四边形ABCD是⊙O的内接四边形,
∴
∴
∵D为的中点,
∴
∴
∵
∴
∴
【点睛】
本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.
3、边长为,边心距为
【分析】
过点O作OE⊥BC,垂足为E,利用圆内接四边形的性质求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根据勾股定理求出OE、BE即可.
【详解】
解:过点O作OE⊥BC,垂足为E,
∵正方形ABCD是半径为R的⊙O内接四边形,R=6,
∴∠BOC==90°,∠OBC=45°,OB=OC=6,
∴BE=OE.
在Rt△OBE中,∠BEO=90°,由勾股定理可得
∵OE2+BE2=OB2,
∴OE2+BE2=36,
∴OE= BE=,
∴BC=2BE=,
即半径为6的圆内接正方形ABCD的边长为,边心距为.
【点睛】
本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于.
4、(1)图见解析;(2)直径所对的圆周角是直角,切线的判定定理
【分析】
(1)根据所给的几何语言作出对应的图形即可;
(2)根据圆周角定理和切线的判定定理解答即可.
【详解】
解:(1)补全图形如图所示,直线AP即为所求作;
(2)证明:连接BA,
由作法可知,
∴点A在以OP为直径的圆上,
∴(直径所对的圆周角是直角),
∵OA是的半径,
∴直线PA与相切(切线的判定定理),
故答案为:直径所对的圆周角是直角,切线的判定定理.
【点睛】
本题考查基本作图-画圆、圆周角定理、切线的判定定理,熟知复杂作图是在基本作图的基础上进行作图,一般是结合几何图形的性质,因此熟练掌握基本图形的性质和切线的判定是解答的关键.
5、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半
【分析】
(1)根据按步骤作图即可;
(2)根据圆周角定理进行证明即可
【详解】
解:(1)如图所示,
(2)证明:连接PC,BD
∵AB=AC,
∴点C在⊙A上
∵BC=BD,
∴∠BAC=∠BAD
∴∠BAC=∠CAD
∵点D,P在⊙A上,
∴∠CPD=∠CAD(圆周角定理) (填推理的依据)
∴∠APC=∠BAC
故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半
【点睛】
本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习,共39页。
这是一份沪科版九年级下册第24章 圆综合与测试课后复习题,共28页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份数学九年级下册第24章 圆综合与测试同步练习题,共29页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。