终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年沪科版九年级数学下册第24章圆专项测评试题(名师精选)

    立即下载
    加入资料篮
    2022年沪科版九年级数学下册第24章圆专项测评试题(名师精选)第1页
    2022年沪科版九年级数学下册第24章圆专项测评试题(名师精选)第2页
    2022年沪科版九年级数学下册第24章圆专项测评试题(名师精选)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试同步达标检测题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试同步达标检测题,共34页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、计算半径为1,圆心角为的扇形面积为( )
    A.B.C.D.
    2、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于( )
    A.10B.6C.6D.12
    3、如图,AB,CD是⊙O的弦,且,若,则的度数为( )
    A.30°B.40°C.45°D.60°
    4、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是( )
    A.1B.C.D.2
    5、的边经过圆心,与圆相切于点,若,则的大小等于( )
    A.B.C.D.
    6、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是( )
    A..等腰三角形B.等边三角形
    C..直角三角形D..等腰直角三角形
    7、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )
    A.1cmB.2cmC.3cmD.4cm
    8、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是( )
    A.B.
    C.或D.(﹣2,0)或(﹣5,0)
    9、下列图形中,是中心对称图形也是轴对称图形的是( )
    A.B.C.D.
    10、若的圆心角所对的弧长是,则此弧所在圆的半径为( )
    A.1B.2C.3D.4
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,四边形ABCD内接于圆,E为CD延长线上一点, 图中与∠ADE相等的角是 _________ .
    2、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.
    3、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是________
    4、在平面直角坐标系中,点关于原点对称的点的坐标是______.
    5、如图,点D为边长是的等边△ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持∠ADB=120°不变,则四边形ADBC的面积S的最大值是 ____.
    三、解答题(5小题,每小题10分,共计50分)
    1、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQ<PO<PQ且PO≤2,我们称点P是线段OQ的“潜力点”
    已知点O(0,0),Q(1,0)
    (1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_____________;
    (2)若点P在直线y=x上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;
    (3)直线y=2x+b与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围
    2、如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB=60°.
    (1)判断△ABC的形状,并证明你的结论;
    (2)求证:PA+PB=PC.
    3、如图,,,点D是上一点,与相交于点F,且.
    (1)求证:;
    (2)求证:;
    (3)若点D是中点,连接,求证:平分.
    4、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.
    已知点N(3,0),A(1,0),,.
    (1)①在点A,B,C中,线段ON的“二分点”是______;
    ②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;
    (2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.
    5、如图,,是的两条切线,切点分别为,,连接并延长交于点,过点作的切线交的延长线于点,于点.
    (1)求证:四边形是矩形;
    (2)若,,求的长..
    -参考答案-
    一、单选题
    1、B
    【分析】
    直接根据扇形的面积公式计算即可.
    【详解】
    故选:B.
    【点睛】
    本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.
    2、D
    【分析】
    连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
    【详解】
    解:连接OB,OC,
    ∵∠BAC=30°,
    ∴∠BOC=60°.
    ∵OB=OC,BC=6,
    ∴△OBC是等边三角形,
    ∴OB=BC=6.
    ∴⊙O的直径等于12.
    故选:D.
    【点睛】
    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
    3、B
    【分析】
    由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.
    4、B
    【分析】
    利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用,求出BE,根据垂径定理求出BD即可得到答案.
    【详解】
    解: 在Rt中,,
    ∴BC=3,,
    连接CD,过点C作CE⊥AB于E,
    ∵,
    ∴,
    解得,
    ∵CB=CD,CE⊥AB,
    ∴,
    ∴,
    故选:B.
    【点睛】
    此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.
    5、A
    【分析】
    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
    【详解】
    解:连接,



    与圆相切于点,


    故选:A.
    【点睛】
    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    6、D
    【分析】
    根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.
    【详解】
    解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,
    ∴∠ECF=90°,CE=CF,
    ∴△CEF是等腰直角三角形,
    故选:D.
    【点睛】
    本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.
    7、B
    【分析】
    连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.
    【详解】
    解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:
    ∵AB=8cm,
    ∴BD=AB=4(cm),
    由题意得:OB=OC==5cm,
    在Rt△OBD中,OD=(cm),
    ∴CD=OC-OD=5-3=2(cm),
    即水的最大深度为2cm,
    故选:B.
    【点睛】
    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    8、C
    【分析】
    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
    【详解】
    解:∵直线交x轴于点A,交y轴于点B,
    ∴令x=0,得y=-3,令y=0,得x=-4,
    ∴A(-4,0),B(0,-3),
    ∴OA=4,OB=3,
    ∴AB=5,
    设⊙P与直线AB相切于D,
    连接PD,
    则PD⊥AB,PD=1,
    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
    ∴△APD∽△ABO,
    ∴,
    ∴,
    ∴AP= ,
    ∴OP= 或OP= ,
    ∴P或P,
    故选:C.
    【点睛】
    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
    9、C
    【分析】
    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故B选项不符合题意;
    C、既是轴对称图形,又是中心对称图形,故C选项符合题意;
    D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.
    故选:C.
    【点睛】
    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    10、C
    【分析】
    先设半径为r,再根据弧长公式建立方程,解出r即可
    【详解】
    设半径为r,
    则周长为2πr,
    120°所对应的弧长为
    解得r=3
    故选C
    【点睛】
    本题考查弧长计算,牢记弧长公式是本题关键.
    二、填空题
    1、∠ABC
    【分析】
    根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果.
    【详解】
    解:∵四边形ABCD内接于圆,
    ∴,
    ∵E为CD延长线上一点,
    ∴,
    ∴,
    故答案为:.
    【点睛】
    题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.
    2、
    【分析】
    连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
    【详解】
    解:如图所示,连接OB,交AC于点D,
    ∵四边形OABC为平行四边形,,
    ∴四边形OABC为菱形,
    ∴,,,
    ∵,
    ∴为等边三角形,
    ∴,
    ∴,
    在中,设,则,
    ∴,
    即,
    解得:或(舍去),
    ∴的长为:,
    故答案为:.
    【点睛】
    题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
    3、
    【分析】
    由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为.
    【详解】
    ∵是一个圆锥在某平面上的正投影
    ∴为等腰三角形
    ∵AD⊥BC

    在中有

    由圆锥侧面积公式有.
    故答案为:。
    【点睛】
    本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为.
    4、(3,4)
    【分析】
    关于原点对称的点,横坐标与纵坐标都互为相反数.
    【详解】
    :由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),
    故答案为:(3,4).
    【点睛】
    本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.
    5、
    【分析】
    根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可.
    【详解】
    解:根据题意作等边三角形的外接圆,
    D在运动过程中始终保持∠ADB=120°不变,
    在圆上运动,
    当点运动到的中点时,四边形ADBC的面积S的最大值,
    过点作的垂线交于点,如图:



    在中,

    解得:,

    过点作的垂线交于,




    故答案是:.
    【点睛】
    本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质.
    三、解答题
    1、(1);(2);(3)或
    【分析】
    (1)分别计算出OQ、PO和PQ的长度,比较即可得出答案;
    (2)先判断点P在以O为圆心,1为半径的圆外且点P在线段OQ垂直平分线的左侧,结合PO≤2,点P在以O为圆心,2为半径的圆上或圆内,可得点P在如图所示的线段AB上(不包含点B),过作轴,过作轴,垂足分别为 再根据图形的性质求解 从而可得答案;
    (3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而PO<PQ,点P在线段OQ垂直平分线的左侧,再分两种情况讨论:当时,当时,分别画出两种情况下的临界直线 再根据临界直线经过的特殊点求解的值,再确定范围即可.
    【详解】
    解:(1) O(0,0),Q(1,0),

    P1(0,-1),P2(,),P3(-1,1)
    不满足OQ<PO<PQ且PO≤2,
    所以不是线段OQ的“潜力点”,
    同理:
    所以不满足OQ<PO<PQ且PO≤2,
    所以不是线段OQ的“潜力点”,
    同理:

    所以满足:OQ<PO<PQ且PO≤2,
    所以是线段OQ的“潜力点”,
    故答案为:P3
    (2)∵点P为线段OQ的“潜力点”,
    ∴OQ<PO<PQ且PO≤2,
    ∵OQ<PO,
    ∴点P在以O为圆心,1为半径的圆外
    ∵PO<PQ,
    ∴点P在线段OQ垂直平分线的左侧,而的垂直平分线为:
    ∵PO≤2,
    ∴点P在以O为圆心,2为半径的圆上或圆内
    又∵点P在直线y=x上,
    ∴点P在如图所示的线段AB上(不包含点B)
    过作轴,过作轴,垂足分别为
    由题意可知△BOC和 △AOD是等腰三角形,

    ∴-≤xp<-
    (3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
    而PO<PQ,点P在线段OQ垂直平分线的左侧
    当时,过时,
    即函数解析式为:
    此时 则
    当与半径为2的圆相切于时,则




    当时,如图,同理可得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
    而PO<PQ,点P在线段OQ垂直平分线的左侧,
    同理:当过 则 直线为
    在直线上,
    此时
    当过时, 则

    所以此时:
    综上:的范围为:1<b≤或<b<-1
    【点睛】
    本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.
    2、(1)△ABC是等边三角形,证明见解析;(2)见解析
    【分析】
    (1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;
    (2)如图所示,在PC取一点E使得AE=AP,先证明△APE是等边三角形,得到AP=PE,∠AEP=60°,可以推出∠AEC=∠APB,然后证明△APB≌△AEC得到BP=CE,即可证明PC=PE+CE=AP+BP.
    【详解】
    解:(1)△ABC是等边三角形.证明如下:
    由圆周角定理:∠BAC=∠CPB,∠ABC=∠APC
    ∵∠APC=∠CPB=60°,
    ∴∠BAC=∠ABC=60°,
    ∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°.
    ∴△ABC是等边三角形.
    (2)如图所示,在PC取一点E使得AE=AP,
    ∵∠APE=60°,AP=AE,
    ∴△APE是等边三角形,
    ∴AP=PE,∠AEP=60°,
    ∴∠AEC=120°,
    又∵∠APC=∠CPB=60°,
    ∴∠APB=120°,
    ∴∠AEC=∠APB,
    ∵△ABC是等边三角形,
    ∴AB=AC,
    又∵∠ABP=∠ACE,
    ∴△APB≌△AEC(AAS),
    ∴BP=CE,
    ∴PC=PE+CE=AP+BP.
    【点睛】
    本题考查了圆周角定理、等边三角形的性质与判定,全等三角形的性质与判定,解题的关键是掌握圆周角定理,正确求出∠ABC=∠BAC=60°.
    3、(1)证明见解析;(2)证明见解析;(3)证明见解析
    【分析】
    (1)在和中,,,故可证明三角形相似.
    (2)由得出.
    (3)法一:由题意知,由得,有,所以可得,又因为可得,;由于,,进而说明,得出平分.法二:通过得出F、D、C、E四点共圆,由得,从而得出平分.
    【详解】
    解:(1)证明在和中


    (2)证明:在和中


    (3)证明:
    又D是中点

    平分.
    法二:
    F、D、C、E四点共圆
    又D是点,
    平分.
    【点睛】
    本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知识点.解题的关键与难点在于角度的转化.解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解.
    4、(1)①B和C;②或;(2)或
    【分析】
    (1)①分别找出点A,B,C到线段ON的最小值和最大值,是否满足“二分点”定义即可;
    ②对a的取值分情况讨论:、、和,根据“二分点”的定义可求解;
    (2)设线段AN上存在的“二分点”为,对的取值分情况讨论、,、,和,根据“二分点”的定义可求解.
    【详解】
    (1)①
    ∵点A在ON上,故最小值为0,不符合题意,
    点B到ON的最小值为,最大值为,
    ∴点B是线段ON的“二分点”,
    点C到ON的最小值为1,最大值为,
    ∴点C是线段ON的“二分点”,
    故答案为:B和C;
    ②若时,如图所示:
    点C到OD的最小值为,最大值为,
    ∵点C为线段OD的“二分点”,
    ∴,
    解得:;
    若,如图所示:
    点C到OD的最小值为1,最大值为,满足题意;
    若时,如图所示:
    点C到OD的最小值为1,最大值为,
    ∵点C为线段OD的“二分点”,
    ∴,
    解得:(舍);
    若时,如图所示:
    点C到OD的最小值为,最大值为,
    ∵点C为线段OD的“二分点”,
    ∴,
    解得:或(舍),
    综上所得:a的取值范围为或;
    (2)
    如图所示,设线段AN上存在的“二分点”为,
    当时,最小值为:,最大值为:,
    ∴,即,
    ∵,

    ∴;
    当,时,最小值为:,最大值为:,
    ∴∴,即,
    ∵,
    ∴,
    ∵,
    ∴不存在;
    当,时,最小值为:,最大值为:,
    ∴,即,
    ∴,
    ∵,
    ∴不存在;
    当时,最小值为:,最大值为:,
    ∴,即,
    ∴,
    ∵,
    ∴,
    综上所述,r的取值范围为或.
    【点睛】
    本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.
    5、(1)见详解;(2)7
    【分析】
    (1)根据切线的性质和矩形的判定定理即可得到结论;
    (2)根据切线长定理可得AB=AC,BE=DE,再利用勾股定理即可求解.
    【详解】
    (1)证明:∵,DE是的两条切线,于点
    ∴∠EFC=∠EDC=∠FCD=90°,
    ∴四边形是矩形;
    (2)∵四边形是矩形,
    ∴EF=,CF=,
    ∵,,DE是的两条切线,
    ∴AB=AC,BE=DE,
    设AB=AC=x,则AE=x+2,AF=x-2,
    在中,,
    解得:x=5,
    ∴AC=5+2=7.
    【点睛】
    本题主要考查切线长定理和勾股定理以及矩形的判定定理,掌握切线长定理以及勾股定理是解题的关键.

    相关试卷

    2021学年第24章 圆综合与测试课时训练:

    这是一份2021学年第24章 圆综合与测试课时训练,共27页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    数学沪科版第24章 圆综合与测试习题:

    这是一份数学沪科版第24章 圆综合与测试习题,共28页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试课后测评:

    这是一份沪科版九年级下册第24章 圆综合与测试课后测评,共26页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map