2021年初中数学二轮复习 专题训练 函数 作业
展开这是一份2021年初中数学二轮复习 专题训练 函数 作业,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
函数
一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.二次函数图象的顶点坐标是( )
A. B. C. D.
【答案】A
【解析】
∵,
∴二次函数图像顶点坐标为:.
故答案为:A.
2.下列关于一次函数的说法,错误的是( )
A.图象经过第一、二、四象限
B.随的增大而减小
C.图象与轴交于点
D.当时,
【答案】D
【解析】
∵,
∴图象经过第一、二、四象限,
A正确;
∵,
∴随的增大而减小,
B正确;
令时,,
∴图象与轴的交点为,
∴C正确;
令时,,
当时,;
D不正确;
故选:D.
3.函数与()在同一坐标系中的图象可能是( )
A. B. C. D.
【答案】D
【解析】
时,,在一、二、四象限,在一、三象限,无选项符合.
时,,在一、三、四象限,()在二、四象限,只有D符合;
故选:D.
4.如图所示,直线l1:yx+6与直线l2:yx﹣2交于点P(﹣2,3),不等式x+6x﹣2的解集是( )
A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2
【答案】A
【解析】
【分析】
利用函数图象写出直线l1:y=x+6与在直线l2:y=-x-2上方所对应的自变量的范围即可.
【详解】
当x>﹣2时,x+6x﹣2,
所以不等式x+6x﹣2的解集是x>﹣2.
故选:A.
5.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).
A.; B.;
C.; D..
【答案】B
【解析】
将抛物线向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为,
故选:B.
6.如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为( )
A.﹣1 B.1 C. D.
【答案】A
【解析】
连接OC、OB,如图,
∵BC∥x轴,
∴S△ACB=S△OCB,
而S△OCB=×|3|+•|k|,
∴×|3|+•|k|=2,
而k<0,
∴k=﹣1,
故选A.
7.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为( )
A.y=﹣ B.y=﹣ C.y=﹣ D.y=
【答案】C
【解析】
过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,
∵∠BOA=90°,
∴∠BOC+∠AOD=90°,
∵∠AOD+∠OAD=90°,
∴∠BOC=∠OAD,
又∵∠BCO=∠ADO=90°,
∴△BCO∽△ODA,
∵=tan30°=,
∴,
∵×AD×DO=xy=3,
∴S△BCO=×BC×CO=S△AOD=1,
∵经过点B的反比例函数图象在第二象限,
故反比例函数解析式为:y=﹣.
故选C.
8.二次函数的部分图象如图所示,图象过点,对称轴为直线x=1,下列结论:①;②;③;④当时,其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【答案】D
【解析】
解:①对称轴位于x轴的右侧,则a,b异号,即.
抛物线与y轴交于正半轴,则.
.
故①正确;
②∵抛物线开口向下,
.
∵抛物线的对称轴为直线,
时,,
而,
即,
故②正确;
③时,,
而
故③正确;
④由抛物线的对称性质得到:抛物线与x轴的另一交点坐标是(3,0).
∴当时,
故④正确.
综上所述,正确的结论有4个.
故选:D.
二、填空题(本大题共4个小题,每小题6分,共24分)
9.函数中,自变量的取值范围是_____.
【答案】
【解析】
依题意,得,
解得:,
故答案为:.
10.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .
【答案】y3>y1>y2.
【解析】
将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.
11.如图,在平面直角坐标系中,菱形OABC的顶点O为坐标原点,顶点A在x轴的正半轴上,顶点C在反比例函数的图象上,已知菱形的周长是8,,则k的值是______.
【答案】
【解析】
过点C作,垂足为D,
,
,
又菱形OABC的周长是8,
,
在中,,
,
,
把代入反比例函数得:,
故答案为:.
12.如图,过点C(3,4)的直线交轴于点A,∠ABC=90°,AB=CB,曲线过点B,将点A沿轴正方向平移个单位长度恰好落在该曲线上,则的值为________.
【答案】4
【解析】
分别过点B、点C作轴和轴的平行线,两条平行线相交于点M,与轴的交点为N,则∠M=∠ANB=90°,
把C(3,4)代入,得4=6+b,解得:b=-2,
所以y=2x-2,
令y=0,则0=2x-2,解得:x=1,
所以A(1,0),
∵∠ABC=90°,
∴∠CBM+∠ABN=90°,
∵∠ANB=90°,
∴∠BAN+∠ABN=90°,
∴∠CBM=∠BAN,
又∵∠M=∠ANB=90°,AB=BC,
∴△ABN≌△BCM,
∴AN=BM,BN=CM,
∵C(3,4),∴设AN=m,CM=n,
则有,解得,
∴ON=3+1=4,BN=1,
∴B(4,1),
∵曲线过点B,
∴k=4,
∴,
∵将点A沿轴正方向平移个单位长度恰好落在该曲线上,此时点A移动后对应点的坐标为(1,a),
∴a=4,
故答案为:4.
三、解答题(本大题共3个小题,每小题12分,共36分. 解答应写出文字说明、证明过程或演算步骤)
13.小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离与小王的行驶时间之间的函数关系.
请你根据图象进行探究:
(1)小王和小李的速度分别是多少?
(2)求线段所表示的与之间的函数解析式,并写出自变量的取值范围.
【答案】(1)小王和小李的速度分别是、;(2).
【解析】
解:(1)由图可得,
小王的速度为:,
小李的速度为:,
答:小王和小李的速度分别是、;
(2)小李从乙地到甲地用的时间为:,
当小李到达甲地时,两人之间的距离为:,
∴点的坐标为,
设线段所表示的与之间的函数解析式为,
,解得,
即线段所表示的与之间的函数解析式是.
14.如图,一次函数的图象与反比例函数的图象相交于、两点,其中点的坐标为,点的坐标为.
(1)根据图象,直接写出满足的的取值范围;
(2)求这两个函数的表达式;
(3)点在线段上,且,求点的坐标.
【答案】(1)或;(2),;(3)
【解析】
(1)观察图象可知当或,k1x+b>;
(2)把代入,得,
∴,
∵点在上,∴,
∴,
把,代入得
,解得,
∴;
(3)设与轴交于点,
∵点在直线上,∴,
,
又,
∴,,
又,∴点在第一象限,
∴,
又,∴,解得,
把代入,得,
∴.
15.如图,抛物线过点,且与直线交于B、C两点,点B的坐标为.
(1)求抛物线的解析式;
(2)点D为抛物线上位于直线上方的一点,过点D作轴交直线于点E,点P为对称轴上一动点,当线段的长度最大时,求的最小值;
(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使?若存在,求点Q的坐标;若不存在,请说明理由.
【答案】(1)抛物线的解析式;(2)的最小值为;(3)点Q的坐标:、.
【解析】
解:(1)将点B的坐标为代入,
,
∴B的坐标为,
将,代入,
解得,,
∴抛物线的解析式;
(2)设,则,
,
∴当时,有最大值为2,
此时,
作点A关于对称轴的对称点,连接,与对称轴交于点P.
,此时最小,
∵,
∴,
,
即的最小值为;
(3)作轴于点H,连接、、、、,
∵抛物线的解析式,
∴,
∵,
∴,
∵,
,
∴,
可知外接圆的圆心为H,
∴
设,
则,
或
∴符合题意的点Q的坐标:、.
相关试卷
这是一份初中数学竞赛专题训练——函数,共4页。
这是一份2021年初中数学二轮复习 专题训练 图形与变换 作业,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021年初中数学二轮复习 专题训练 压轴题 作业,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。