高考数学(理数)二轮复习专题强化训练20《统计案例》 (学生版)
展开一、选择题
1.某班对八校联考成绩进行分析,利用随机数法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是( )
(注:下表为随机数表的第8行和第9行)
6301 6378 5916 9555 6719 9810 5071 7512 8673 5807 4439 5238 79
3321 1234 2978 6456 0782 5242 0744 3815 5100 1342 9966 0279 54
A.07 B.25
C.42 D.52
2.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如图所示的饼图:
则下面结论中不正确的是( )
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
3.AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或污染的程度.AQI共分六级,从一级优(0~50);二级良(51~100);三级轻度污染(101~150);四级中度污染(151~200);直至五级重度污染(201~300);六级严重污染(大于300).如图是昆明市2017年4月份随机抽取10天的AQI茎叶图,利用该样本估计昆明市2018年4月份空气质量优的天数为( )
A.3 B.4
C.12 D.21
4.对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,如图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则该样本中三等品的件数为( )
A.5 B.7
C.10 D.50
5.如图是2017年第一季度五省GDP情况图,则下列陈述正确的是( )
①2017年第一季度GDP总量和增速均居同一位的省只有1个;
②与去年同期相比,2017年第一季度五个省的GDP总量均实现了增长;
③去年同期的GDP总量前三位是D省、B省、A省;
④2016年同期A省的GDP总量也是第三位.
A.①② B.②③④
C.②④ D.①③④
6.(一题多解)某学校A、B两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数学兴趣小组成绩的平均值及标准差.
①A班数学兴趣小组的平均成绩高于B班的平均成绩;
②B班数学兴趣小组的平均成绩高于A班的平均成绩;
③A班数学兴趣小组成绩的标准差大于B班成绩的标准差;
④B班数学兴趣小组成绩的标准差大于A班成绩的标准差.
其中正确结论的编号为( )
A.①③ B.①④
C.②③ D.②④
二、填空题
7.给出下列四个命题:
①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23;
②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;
③若一组数据a,0,1,2,3的平均数为1,则其标准差为2;
④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为=+x,其中=2,=1,=3,则=1.
其中真命题有________(填序号).
8.为了解某社区居民购买水果和牛奶的年支出费用与购买食品的年支出费用的关系,随机调查了该社区5户家庭,得到如下统计数据表:
购买食品的年 支出费用x/万元 | 2.09 | 2.15 | 2.50 | 2.84 | 2.92 |
购买水果和牛奶的年支出费用y/万元 | 1.25 | 1.30 | 1.50 | 1.70 | 1.75 |
根据上表可得回归直线方程=x+,其中=0.59,=-,据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为________万元.
9.某同学在高三学年的五次阶段性考试中,数学成绩依次为110,114,121,119,126,则这组数据的方差是________.
三、解答题
10.某校为了解高一学生周末的“阅读时间”,从高一年级中随机抽取了100名学生进行调查,获得了每人的周末“阅读时间”(单位:小时),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示:
(1)求图中a的值;
(2)估计该校高一学生周末“阅读时间”的中位数;
(3)用样本频率代替概率.现从全校高一年级随机抽取20名学生,其中有k名学生“阅读时间”在[1,2.5)内的概率为P(X=k),其中k=0,1,2,…,20.当P(X=k)最大时,求k的值.
11.随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1~8月促销费用(单位:万元)和产品销量(单位:万件)的具体数据.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用x | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量y | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根据数据可知y与x具有线性相关关系,请建立y关于x的回归方程=x+(系数精确到0.01);
(2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以z(单位:件)表示日销量,z∈[1 800,2 000),则每位员工每日奖励100元;z∈[2 000,2 100),则每位员工每日奖励150元;z∈[2 100,+∞),则每位员工每日奖励200元.现已知该网站6月份日销量z服从正态分布N(0.2,0.000 1),请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位).
参考数据:
xiyi=338.5,x=1 308,其中xi,yi分别为第i个月的促销费用和产品销量,i=1,2,3,…,8.若随机变量z服从正态分布N(μ,σ2),则P(μ-σ<z<μ+σ)=0.682 7,P(μ-2σ<z<μ+2σ)=0.954 5.
12.某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[50,100],按照区间[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.
(1)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;
| 甲班 | 乙班 | 总计 |
大于等于80分的人数 |
|
|
|
小于80分的人数 |
|
|
|
总计 |
|
|
|
(2)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,从中选3名学生发言,记来自[80,90)发言的人数为随机变量X,求X的分布列和数学期望.
参数数据和公式:
P(K2≥k0) | 0.10 | 0.05 | 0.025 |
k0 | 2.706 | 3.841 | 5.024 |
K2=
高考数学(理数)二轮复习专题强化训练22《不等式选讲》 (学生版): 这是一份高考数学(理数)二轮复习专题强化训练22《不等式选讲》 (学生版),共4页。试卷主要包含了已知函数f=|ax-1|-x.,已知函数f=|2x+3a2|.,已知函数f=x2-|x|+1.等内容,欢迎下载使用。
高考数学(理数)二轮复习专题强化训练21《参数方程与极坐标》 (学生版): 这是一份高考数学(理数)二轮复习专题强化训练21《参数方程与极坐标》 (学生版),共4页。试卷主要包含了在直角坐标系xOy中,曲线C1,在直角坐标系xOy中,曲线C等内容,欢迎下载使用。
高考数学(理数)二轮复习专题强化训练19《概率与随机分布》 (学生版): 这是一份高考数学(理数)二轮复习专题强化训练19《概率与随机分布》 (学生版),共8页。