【历年真题】2022年山西省介休市中考数学历年真题汇总 卷(Ⅲ)(精选)
展开2022年山西省介休市中考数学历年真题汇总 卷(Ⅲ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列几何体中,俯视图为三角形的是( )
A. B.
C. D.
2、下列关于x的方程中,一定是一元二次方程的是( )
A. B.
C. D.
3、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )
A.的 B.祖 C.国 D.我
4、下列关于x的二次三项式在实数范围内不能够因式分解的是( )
A.x2﹣3x+2 B.2x2﹣2x+1 C.2x2﹣xy﹣y2 D.x2+3xy+y2
5、若反比例函数的图象经过点,则该函数图象不经过的点是( )
A.(1,4) B.(2,-2) C.(4,-1) D.(1,-4)
6、地球赤道的周长是40210000米,将40210000用科学记数法表示应为( )
A. B. C. D.
7、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )
A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地
C.甲行驶小时时货车到达地 D.甲行驶到地需要
8、有理数、、、在数轴上对应的点的位置如图所示,则下列结论错误的是( )
A. B. C. D.
9、如图,点在直线上,平分,,,则( )
A.10° B.20° C.30° D.40°
10、如图,二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),点B(m,0),点C(0,﹣m),其中2<m<3,下列结论:①2a+b>0,②2a+c<0,③方程ax2+bx+c=﹣m有两个不相等的实数根,④不等式ax2+(b﹣1)x<0的解集为0<x<m,其中正确结论的个数为( )
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、直接写出计算结果:
(1)=____;
(2)____;
(3)=____;
(4)102×98=____.
2、在中,DE∥BC,DE交边AB、AC分别于点D、E,如果与四边形BCED的面积相等,那么AD:DB的值为_______
3、如图,是直线上的一点,和互余,平分,若,则的度数为__________.(用含的代数式表示)
4、如图,中,,,,D是AB上的动点,以DC为斜边作等腰直角使,点E和点A位于CD的两侧,连接BE,BE的最小值为______.
5、请写出一个过第二象限且与轴交于点的直线表达式___.
三、解答题(5小题,每小题10分,共计50分)
1、已知在平面直角坐标系中,拋物线与轴交于点和点,与轴交于点 ,点是该抛物线在第一象限内一点,联结与线段相交于点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与线段交于点,如果点与点重合,求点的坐标;
(3)过点作轴,垂足为点与线段交于点,如果,求线段的长度.
2、如图,是由几个大小相同的小正方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示这个位置小正方体的个数,请画出从正面、左面看到的这个几何体的形状图.
3、如图,平面直角坐标系中,已知点,,,是的边上任意一点,经过平移后得到△,点的对应点为.
(1)直接写出点,,的坐标.
(2)在图中画出△.
(3)连接,,,求的面积.
(4)连接,若点在轴上,且三角形的面积为8,请直接写出点的坐标.
4、一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的的小正方体个数.
(1)请画出从正面和从左面看到的这个几何体的形状图.
(2)若小正方体的棱长为2,求该几何体的体积和表面积.
5、郑州到西安的路程为480千米,由于西安疫情紧张,郑州物资中心对西安进行支援.甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,已知乙车的速度为每小时,且到郑州后停止行驶,进行消毒.它们离各自出发地的距离与行驶时间之间的关系如下图所示.
(1)______,______.
(2)请你求出甲车离出发地郑州的距离与行驶时间之间的函数关系式.
(3)求出点的坐标,并说明此点的实际意义.
(4)直接写出甲车出发多长时间两车相距40千米.
-参考答案-
一、单选题
1、C
【分析】
依题意,对各个图形的三视图进行分析,即可;
【详解】
由题知,对于A选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆;
对于B选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形;
对于C选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形;
对于D选项:主视图:正方形;侧视图:正方形;俯视图:正方形;
故选:C
【点睛】
本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;
2、C
【分析】
根据一元二次方程的定义判断.
【详解】
A.含有,不是一元二次方程,不合题意;
B.整理得,-x+1=0,不是一元二次方程,不合题意;
C.x2=0是一元二次方程,故此选项符合题意;
D.当a=0时,ax2+bx+c=0,不是一元二次方程,不合题意.
故选C.
【点睛】
本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).
3、B
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
第一列的“我”与“的”是相对面,
第二列的“我”与“国”是相对面,
“爱”与“祖”是相对面.
故选:B.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
4、B
【分析】
利用十字乘法把选项A,C分解因式,可判断A,C,利用一元二次方程根的判别式计算的值,从而可判断B,D,从而可得答案.
【详解】
解: 故A不符合题意;
令
所以在实数范围内不能够因式分解,故B符合题意;
故C不符合题意;
令
所以在实数范围内能够因式分解,故D不符合题意;
故选B
【点睛】
本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.
5、A
【分析】
由题意可求反比例函数解析式,将点的坐标一一打入求出xy的值,即可求函数的图象不经过的点.
【详解】
解:因为反比例函数的图象经过点,
所以,
选项A,该函数图象不经过的点(1,4),故选项A符合题意;
选项B,该函数图象经过的点(2,-2),故选项B不符合题意;
选项C,该函数图象经过的点(4,-1),故选项C不符合题意;
选项B,该函数图象经过的点(1,-4),故选项D不符合题意;
故选A.
【点睛】
考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键.
6、A
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:40210000
故选:A
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
7、C
【分析】
根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.
【详解】
解:两地的距离为,
故A选项正确,不符合题意;
故D选项正确,不符合题意;
根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,
则
即货车返回途中与甲相遇后又经过甲到地
故B选项正确,
相遇时为第4小时,此时甲行驶了,
货车行驶了
则货车的速度为
则货车到达地所需的时间为
即第小时
故甲行驶小时时货车到达地
故C选项不正确
故选C
【点睛】
本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.
8、C
【分析】
根据有理数a,b,c,d在数轴上对应的点的位置,逐个进行判断即可.
【详解】
解:由有理数a,b,c,d在数轴上对应的点的位置可得,
-4<d<-3<-1<c<0<1<b<2<3<a<4,
∴,,,
,
故选:C.
【点睛】
本题考查数轴表示数的意义,根据点在数轴上的位置,确定该数的符号和绝对值是正确判断的前提.
9、A
【分析】
设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.
【详解】
解:设∠BOD=x,
∵OD平分∠COB,
∴∠BOD=∠COD=x,
∴∠AOC=180°-2x,
∵∠AOE=3∠EOC,
∴∠EOC=∠AOC==,
∵∠EOD=50°,
∴,
解得:x=10,
故选A.
【点睛】
本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.
10、C
【分析】
利用二次函数的对称轴方程可判断①,结合二次函数过 可判断②,由与有两个交点,可判断③,由过原点,对称轴为 求解函数与轴的另一个交点的横坐标,结合原二次函数的对称轴及与轴的交点坐标,可判断④,从而可得答案.
【详解】
解: 二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),点B(m,0),
抛物线的对称轴为:
2<m<3,则
而图象开口向上
即 故①符合题意;
二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),
则
则
故②符合题意;
与有两个交点,
方程ax2+bx+c=﹣m有两个不相等的实数根,故③符合题意;
关于对称,
过原点,对称轴为
该函数与抛物线的另一个交点的横坐标为:
不等式ax2+(b﹣1)x<0的解集不是0<x<m,故④不符合题意;
综上:符合题意的有①②③
故选:C
【点睛】
本题考查的是二次函数的图象与性质,利用二次函数的图象判断及代数式的符号,二次函数与一元二次方程,不等式之间的关系,熟练的运用数形结合是解本题的关键.
二、填空题
1、-12 -1 ax 9996
【分析】
(1)先乘方,再加减即可;
(2)逆用积的乘方法则进行计算;
(3)运用幂的乘方法则,同底数幂的乘除法法则以及积的乘方法则计算即可;
(4)运用平方差公式计算即可.
【详解】
解:(1)
=﹣1+(﹣10)﹣1
=﹣1﹣10﹣1
=﹣12.
故答案为:﹣12.
(2)
=()101×()101
()101
=﹣()101
=﹣1.
故答案为:﹣1.
(3)
=a2x﹣2•ax+1÷a2x﹣1
=a2x﹣2+x+1﹣(2x﹣1)
=ax.
故答案为:ax.
(4)102×98
=(100+2)×(100﹣2)
=100²﹣2²
=9996.
故答案为:9996.
【点睛】
本题考查了实数的运算,平方差公式,同底数幂的乘除法,幂的乘方与积的乘方,零指数幂,负整数指数幂,熟练掌握各运算法则是解题关键.
2、##
【分析】
由DE∥BC,可得△ADE∽△ABC,又由△ADE的面积与四边形BCED的面积相等,根据相似三角形的面积比等于相似比的平方,即可求得的值,然后利用比例的性质可求出AD:DB的值.
【详解】
解:∵DE∥BC,
∴△ADE∽△ABC,
∵△ADE的面积与四边形BCED的面积相等,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
此题考查了相似三角形的判定与性质.此题难度不大,解题的关键是注意相似三角形的面积比等于相似比的平方定理的应用与数形结合思想的应用.
3、2m
【分析】
根据互余定义求得∠DOC=90°,由此得到∠COE=90°-m,根据角平分线的定义求得∠BOC的度数,利用互补求出答案.
【详解】
解:∵和互余,
∴ + =90°,
∴∠DOC=90°,
∵,
∴∠COE=90°-m,
∵平分,
∴∠BOC=2∠COE=180°-2m,
∴ =180°-∠BOC=2m,
故答案为:2m.
【点睛】
此题考查了角平分线的定义,余角的定义,补角的定义,正确理解图形中各角度的关系并进行推理论证是解题的关键.
4、##
【分析】
以AC为斜边在AC右侧作等腰直角三角形AE1C,边E1C与AB 交于点G,连接E1E延长与AB交于点F,作BE2⊥E1F于点E2,由Rt△DCE与Rt△AE1C为等腰直角三角形,可得∠DCE=∠CDE=∠ACE1=∠CAE1=45°,于是∠ACD=∠E1CE,因此△ACD∽△E1CE,所以∠CAD=∠CE1E=30°,所以E在直线E1E上运动,当BE2⊥E1F时,BE最短,即为BE2的长.
【详解】
解:如图,以AC为斜边在AC右侧作等腰直角三角形AE1C,边E1C与AB 交于点G,连接E1E并延长与AB交于点F,作BE2⊥E1F于点E2,连接CF,
∵Rt△DCE与Rt△AE1C为等腰直角三角形,
∴∠DCE=∠CDE=∠ACE1=∠CAE1=45°,
∴∠ACD=∠E1CE,
,
∴△ACD∽△E1CE,
∴∠CAD=∠CE1E=30°,
∵D为AB上的动点,
∴E在直线E1E上运动,
当BE2⊥E1F时,BE最短,即为BE2的长.
在△AGC与△E1GF中,
∠AGC=∠E1GF,∠CAG=∠GE1F,
∴∠GFE1=∠ACG=45°,
∴∠BFE2=45°,
∵,
∴ ,
∴∠AE1C=∠AFC=90°,
∵AC=6,∠BAC=30°,∠ACB=90°,
∴BC=AC=,
又∵∠ABC=60°,
∴∠BCF=30°,
∴BF=BC=,
∴BE2=BF=,
即BE的最小值为.
故答案为:
【点睛】
本题考查了等腰直角三角形的性质,勾股定理的应用,含30度角的直角三角形的性质,相似三角形的判定和性质,熟练构造等腰直角三角形是解本题的关键.
5、(答案不唯一)
【分析】
因为直线过第二象限,与y轴交于点(0,-3),则b=-3.写一个满足题意的直线表达式即可
【详解】
解:直线过第二象限,且与轴交于点,
,,
直线表达式为:.
故答案为:(答案不唯一).
【点睛】
本题考查了一次函数的图像和性质,解题的关键是熟记一次函数的图像和性质.
三、解答题
1、
(1)
(2)
(3)
【分析】
(1)将点和点代入,即可求解;
(2)分别求出和直线的解析式为,可得,,再求直线的解析式为,联立,即可求点;
(3)设,则,则,用待定系数法求出直线的解析式为,联立,可求出,,直线与轴交点,则,再由,可得,则有方程,求出,即可求.
(1)
解:将点和点代入,
,
,
;
(2)
解:,
对称轴为直线,
令,则,
解得或,
,
设直线的解析式为,
,
,
,
,,
设直线的解析式为,
,
,
,
联立,
或(舍,
;
(3)
解:
设,则,
,
设直线的解析式为,
,
,
,
联立,
,
,,
直线与轴交点,
,
,
,
轴,
,
,
,
,
,
,
,
.
【点睛】
本题是二次函数的综合题,解题的关键是熟练掌握二次函数的图象及性质,会求二次函数的交点坐标,本题计算量较大,准确的计算也是解题的关键.
2、见解析
【分析】
由已知条件可知,从正面看有3列,每列小正方数形数目分别为4,2,3;从左面看有3列,每列小正方形数目分别为2,4,3,据此可画出图形.
【详解】
解:如图所示:
【点睛】
考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
3、
(1),,
(2)见解析
(3)的面积=6
(4)或
【分析】
(1)利用P点和P1的坐标特征得到平移的方向与距离,然后利用此平移规律写出点A1,B1,C1的坐标;
(2)利用点A1,B1,C1的坐标描点即可;
(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△AOA1的面积;
(4)设Q(0,t),利用三角形面积公式得到×8×|t−1|=8,然后解方程求出t得到Q点的坐标.
(1)
解:,,;
(2)
解:如图,△为所作;
(3)
解:的面积
,
,
;
(4)
解:设,
,,
,
三角形的面积为8,
,解得或,
点的坐标为或.
【点睛】
本题考查了作图−平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
4、
(1)见解析;
(2)104,192
【分析】
(1)根据从正面看,从左面看的定义,仔细画出即可;
(2)体积等于立方体的个数×单个的体积;表面积等于上下面的个数即从上面看的图形正方形个数的2倍;左右看的正方形面数,前后看的正方形面数,其和乘以一个正方形的面积即可.
(1)
∵ ,
∴ .
(2)
∵小正方体的棱长为2,
∴每个小正方体的体积为2×2×2=8,
∴该几何体的体积为(3+2+1+1+2+4)×8=104;
∵ ,
∴每个小正方形的面积为2×2=4,
∴几何体的上下面的个数为6×2=12个,前后面的个数为6+2+8=16个,左右面的个数为4+3+2+3+4+4=20个,
∴几何体的表面积为:(12+16+20)×4=192.
【点睛】
本题考查了从不同方向看,几何体体积和表面积,正确理解确定小正方体的个数是解题的关键.
5、
(1)8,6.5
(2)
(3)点P的坐标为(5,360),点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米
(4)当甲车出发2.4小时或2.8小时或小时两车相距40千米
【分析】
(1)先根据题意判断出直线的函数图像时乙车的,折线的函数图像时甲车的,然后求出甲车的速度即可求出甲返回郑州的时间,即可求出m;然后算出乙车从西安到郑州需要的时间即可求出n;
(2)分甲从郑州到西安和从西安到郑州两种情况求解即可;
(3)根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,由此列出方程求解即可;
(4)分情况:当甲车在去西安的途中,甲乙两车相遇前,当甲车在去西安的途中,甲乙两车相遇后,当甲车在返回郑州的途中,乙未到郑州时,当甲车在返回郑州的途中,乙已经到郑州时,四种情况讨论求解即可.
(1)
解:∵甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,乙车到底郑州后立即停止,
∴直线的函数图像是乙车的,折线的函数图像是甲车的,
由函数图像可知,甲车4小时从郑州行驶到西安走了480千米,
∴甲车的速度=480÷4=120千米/小时,
∴甲车从西安返回郑州需要的时间=480÷120=4小时,
∴m=4+4=8;
∵乙车的速度为80千米/小时,
∴乙车从西安到达郑州需要的时间=480÷80=6小时,
∵由函数图像可知乙车是在甲车出发0.5小时后出发,
∴n=0.5+6=6.5,
故答案为:8,6.5;
(2)
解:当甲车从郑州去西安时,
∵甲车的速度为120千米/小时,
∴甲车与郑州的距离,
当甲车从西安返回郑州时,
∵甲车的速度为120千米/小时,
∴甲车与郑州的距离,
∴;
(3)
解:根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,
∵此时甲车处在返程途中,
∴,
解得,
∴,
∴点P的坐标为(5,360),
∴点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米;
(4)
解:当甲车在去西安的途中,甲乙两车相遇前,
由题意得:,
解得;
当甲车在去西安的途中,甲乙两车相遇后,
由题意得:,
解得;
当甲车在返回郑州的途中,乙未到郑州时,
由题意得:
解得(不符合题意,舍去),
当甲车在返回郑州的途中,乙已经到郑州时,
由题意得:
解得;
综上所述,当甲车出发2.4小时或2.8小时或小时两车相距40千米.
【点睛】
本题主要考查了从函数图像获取信息,一元一次方程的应用,正确理解题意是解题的关键.
【历年真题】2022年最新中考数学历年真题汇总 卷(Ⅲ)(含答案及解析): 这是一份【历年真题】2022年最新中考数学历年真题汇总 卷(Ⅲ)(含答案及解析),共24页。试卷主要包含了有理数等内容,欢迎下载使用。
【历年真题】2022年陕西省咸阳市中考数学历年真题汇总 (A)卷(含详解): 这是一份【历年真题】2022年陕西省咸阳市中考数学历年真题汇总 (A)卷(含详解),共25页。试卷主要包含了下列说法正确的是,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。
【历年真题】:2022年江西省宜春市中考数学历年真题汇总 (A)卷(含答案详解): 这是一份【历年真题】:2022年江西省宜春市中考数学历年真题汇总 (A)卷(含答案详解),共23页。试卷主要包含了下列各点在反比例的图象上的是,若,则的值为,的相反数是,下列说法正确的是等内容,欢迎下载使用。