年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析沪科版九年级数学下册第24章圆专项攻克试题(含详细解析)

    立即下载
    加入资料篮
    2022年必考点解析沪科版九年级数学下册第24章圆专项攻克试题(含详细解析)第1页
    2022年必考点解析沪科版九年级数学下册第24章圆专项攻克试题(含详细解析)第2页
    2022年必考点解析沪科版九年级数学下册第24章圆专项攻克试题(含详细解析)第3页
    还剩34页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试同步测试题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步测试题,共37页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆专项攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )

    A.50° B.70° C.110° D.120°
    2、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )

    A. B. C. D.
    3、如图,是△ABC的外接圆,已知,则的大小为( )

    A.55° B.60° C.65° D.75°
    4、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为( )

    A.3 B. C. D.
    5、如图,四边形内接于,如果它的一个外角,那么的度数为( )

    A. B. C. D.
    6、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
    A.相离 B.相切 C.相交 D.相交或相切
    7、下列语句判断正确的是(  )
    A.等边三角形是轴对称图形,但不是中心对称图形
    B.等边三角形既是轴对称图形,又是中心对称图形
    C.等边三角形是中心对称图形,但不是轴对称图形
    D.等边三角形既不是轴对称图形,也不是中心对称图形
    8、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )

    A. B. C. D.
    9、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为( )

    A.64° B.52° C.42° D.36°
    10、如图,是的直径,弦,垂足为,若,则( )

    A.5 B.8 C.9 D.10
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.

    2、如图,将Rt△ABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,∠ABC=38°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 ___.

    3、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:
    已知:⊙O(纸片),其半径为.
    求作:一个正方形,使其面积等于⊙O的面积.
    作法:①如图1,取⊙O的直径,作射线,过点作的垂线;
    ②如图2,以点为圆心,为半径画弧交直线于点;
    ③将纸片⊙O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;
    ④取的中点,以点为圆心,为半径画半圆,交射线于点;
    ⑤以为边作正方形.
    正方形即为所求.

    根据上述作图步骤,完成下列填空:
    (1)由①可知,直线为⊙O的切线,其依据是________________________________.
    (2)由②③可知,,,则_____________,____________(用含的代数式表示).
    (3)连接,在Rt中,根据,可计算得_________(用含的代数式表示).由此可得.
    4、已知正多边形的半径与边长相等,那么正多边形的边数是______.
    5、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
    ①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,抛物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,且OB=OC.

    (1)求a的值;
    (2)点D是该抛物线的顶点,点P(m,n)是第三象限内抛物线上的一个点,分别连接BD、BC、CD、BP,当∠PBA=∠CBD时,求m的值;
    (3)点K为坐标平面内一点,DK=2,点M为线段BK的中点,连接AM,当AM最大时,求点K的坐标.
    2、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过A,B,C三点的抛物线上.
    (1)求抛物线的解析式;
    (2)求过A,B,C三点的圆的半径;
    (3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;

    3、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.

    (1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE.
    ①求证:BE平分∠AEC.
    ②取BC的中点P,连接PH,求证:PHCG.
    ③若BC=2AB=2,求BG的长.
    (2)若点A,E,D第二次在同一直线上,BC=2AB=4,直接写出点D到BG的距离.
    4、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)

    (1)画出关于原点对称的图形,并写出点的坐标;
    (2)画出绕点O逆时针旋转后的图形,并写出点的坐标;
    (3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)
    5、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D.

    (1)弦AB的长为 .
    (2)求劣弧的长.

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据旋转可得,,得.
    【详解】
    解:,,

    将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
    ,,

    故选:B.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
    2、C
    【分析】
    过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.
    【详解】
    解:如图,过点A作AC⊥x轴于点C,

    设 ,则 ,
    ∵ ,,
    ∴,
    ∵, ,
    ∴ ,
    解得: ,
    ∴ ,
    ∴ ,
    ∴点 ,
    ∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,
    ∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.
    故选:C
    【点睛】
    本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.
    3、C
    【分析】
    由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.
    【详解】
    解:∵OA=OB,,
    ∴∠BAO=.
    ∴∠AOB=130°.
    ∴=∠AOB=65°.
    故选:C.
    【点睛】
    此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.
    4、A
    【分析】
    分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.
    【详解】
    解:连接BO,并延长交⊙O于D,连结DC,
    ∵∠A=30°,
    ∴∠D=∠A=30°,
    ∵BD为直径,
    ∴∠BCD=90°,
    在Rt△BCD中,BC=3,∠D=30°,
    ∴BD=2BC=6,
    ∴OB=3.
    故选A.

    【点睛】
    本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.
    5、D
    【分析】
    由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.
    【详解】


    ∵四边形内接于

    又∵
    ∴.
    故选:D.
    【点睛】
    本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.
    6、B
    【分析】
    圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
    【详解】
    解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
    ⊙O的半径等于圆心O到直线l的距离,
    直线l与⊙O的位置关系为相切,
    故选B
    【点睛】
    本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
    7、A
    【分析】
    根据等边三角形的对称性判断即可.
    【详解】
    ∵等边三角形是轴对称图形,但不是中心对称图形,
    ∴B,C,D都不符合题意;
    故选:A.
    【点睛】
    本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.
    8、D
    【分析】
    连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.
    【详解】
    解:连接CD,如图所示:

    ∵点D是AB的中点,,,
    ∴,
    ∵,
    ∴,
    在Rt△ACB中,由勾股定理可得;
    故选D.
    【点睛】
    本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.
    9、B
    【分析】
    先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.
    【详解】
    解:∵CC′∥AB,
    ∴∠ACC′=∠CAB=64°
    ∵△ABC在平面内绕点A旋转到△AB′C′的位置,
    ∴∠CAC′等于旋转角,AC=AC′,
    ∴∠ACC′=∠AC′C=64°,
    ∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,
    ∴旋转角为52°.
    故选:B.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    10、C
    【分析】
    连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得
    【详解】
    解:如图,连接,

    ∵是的直径,弦,

    设的半径为,则
    在中,,

    解得


    故选C
    【点睛】
    本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    二、填空题
    1、35°
    【分析】
    利用圆周角定理求出所求角度数即可.
    【详解】
    解:与都对,且,

    故答案为:.
    【点睛】
    本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.
    2、76°或142°
    【分析】
    设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,根据圆周角定理得∠BOD=2∠BCD,根据等腰三角形的性质分BC为底边和BC为腰求∠BCD的度数即可.
    【详解】
    解:设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,
    ∵Rt△ABC的斜边AB与量角器的直径恰好重合,
    ∴A、C、B、D四点共圆,圆心为点O,
    ∴∠BOD=2∠BCD,
    ①若BC为等腰三角形的底边时,如图射线CD1,则∠BCD1=∠ABC=38°,
    连接OD1,则∠BOD1=2∠BCD1=76°;
    ②若BC为等腰三角形的腰时,
    当∠ABC为顶角时,如图射线CD2,则∠BCD2=(180°-∠ABC)÷2=71°,
    连接OD2,则∠BOD2=2∠BCD2=142°,
    当∠ABC为底角时,∠BCD=180°-2∠ABC=104°,不符合题意,舍去,
    综上,点D在量角器上对应的度数是76°或142°,
    故答案为:76°或142°.

    【点睛】
    本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键.
    3、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3)
    【分析】
    (1)根据切线的定义判断即可.
    (2)由=AC+,计算即可;根据计算即可.
    (3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可.
    【详解】
    解:(1)∵⊙O的直径,作射线,过点作的垂线,
    ∴经过半径外端且垂直于这条半径的直线是圆的切线;
    故答案为:经过半径外端且垂直于这条半径的直线是圆的切线;
    (2)根据题意,得AC=r,==πr,
    ∴=AC+=r+πr,
    ∴=;
    ∵,
    ∴MA=-r=,
    故答案为:,;
    (3)如图,连接ME,
    根据勾股定理,得
    =
    =;

    故答案为:.
    【点睛】
    本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.
    4、六
    【分析】
    设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.
    【详解】
    解:设这个正多边形的边数为n,
    ∵正多边形的半径与边长相等,
    ∴OA=OB=AB,
    ∴△OAB是等边三角形,
    ∴∠AOB=60°,
    ∴,
    ∴,
    ∴正多边形的边数是六,
    故答案为:六.

    【点睛】
    本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.
    5、①②④
    【分析】
    连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.
    【详解】
    解:连接OM,

    ∵PE为的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,,
    ∴,
    即AM平分,故①正确;
    ∵AB为的直径,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,故②正确;
    ∵,
    ∴,
    ∵,
    ∴,
    ∴的长为,故③错误;
    ∵,,,
    ∴,
    ∴,
    ∴,
    ∴,
    又∵,,,
    ∴,
    又∵,
    ∴,
    设,则,
    ∴,
    在中,,
    ∴,
    ∴,
    由①可得,

    故④正确,
    故答案为:①②④.
    【点睛】
    本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    三、解答题
    1、
    (1)
    (2)
    (3)
    【分析】
    (1)先求得,点的坐标,进而根据即可求得的值;
    (2)过点作轴于点,证明是直角三角形,进而,根据相似的性质列出比例式进而代入点的坐标解方程即可;
    (3)接,取的中点,连接,根据题意,点在以为圆心,2为半径的圆上,则在以为圆心,为半径的圆上运动,根据点与圆的距离求最值,进而求得的解析式为,根据,设直线的解析式为,将点代入求得,进而设,根据,进而根据勾股定理列出方程解方程求解即可.
    (1)

    令,解得
    令,
    抛物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,
    抛物线与轴的交点为





    解得
    (2)
    如图,过点作轴于点,







    是直角三角形,且





    在抛物线上,



    整理得
    解得(舍)
    在第三象限,


    (3)
    如图,连接,取的中点,连接,

    是的中位线

    根据题意点在以为圆心,2为半径的圆上,
    则在以为圆心,为半径的圆上运动,
    当三点共线,且在的延长线上时,最大,如图,




    设直线的解析式为,代入点,

    解得
    直线的解析式为

    设直线的解析式为


    解得
    则的解析式为
    设点,


    解得(舍去)



    【点睛】
    本题考查了二次函数综合运用,点与圆的距离求最值问题,相似三角形的性质与判定,正确的添加辅助线并熟练掌握以上知识是解题的关键.
    2、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5).
    【分析】
    (1)3=OC=OA=3OB,故点A、B、C的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;
    (2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;
    (3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.
    【详解】
    解:(1)令x=0,则y=3,
    则点A的坐标为(3,0),
    根据题意得:OC=3=OA=3OB,
    故点B、C的坐标分别为:(-1,0)、(3,0),
    则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),
    把(3,0)代入得-3a=3,
    解得:a=-1,
    故抛物线的表达式为:y=-x2+2x+3;
    (2)圆的圆心在BC的中垂线上,故设圆心R(1,m),
    则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),
    则圆的半径为:;
    (3)过点A、C分别作直线AC的垂线,交抛物线分别为P、P1,

    设点P(x,-x2+2x+3),过点P作PQ⊥轴于点Q,
    ∵OA =OC,∠PAC=90°,
    ∴∠ACO=∠OAC=45°,
    ∵∠PAC=90°,
    ∴∠PAQ=45°,
    ∴△PAQ 是等腰直角三角形,
    ∴PQ=AQ=x,
    ∴AQ+AO=x+3=-x2+2x+3,
    解得:(舍去),
    ∴点P(1,4);
    设点P1(m,-m2+2m+3),过点P1作P1D⊥轴于点D,
    同理得△P1CD是等腰直角三角形,且点P1在第三象限,即m

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共31页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试同步达标检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步达标检测题,共34页。

    数学沪科版第24章 圆综合与测试课时作业:

    这是一份数学沪科版第24章 圆综合与测试课时作业,共32页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map