![2022年必考点解析沪科版九年级数学下册第24章圆专题攻克试题第1页](http://www.enxinlong.com/img-preview/2/3/12685440/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪科版九年级数学下册第24章圆专题攻克试题第2页](http://www.enxinlong.com/img-preview/2/3/12685440/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪科版九年级数学下册第24章圆专题攻克试题第3页](http://www.enxinlong.com/img-preview/2/3/12685440/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版九年级下册第24章 圆综合与测试巩固练习
展开
这是一份沪科版九年级下册第24章 圆综合与测试巩固练习,共30页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个图案中,是中心对称图形的是( )A. B.C. D.2、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是( )A.1cm B.2cm C.2cm D.4cm3、的边经过圆心,与圆相切于点,若,则的大小等于( )A. B. C. D.4、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<25、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为( )A.5 B. C. D.6、如图,在中,,,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )A. B. C. D.7、如图图案中,不是中心对称图形的是( )A. B. C. D.8、点P(3,﹣2)关于原点O的对称点的坐标是( )A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)9、下列四个图案中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.10、下列语句判断正确的是( )A.等边三角形是轴对称图形,但不是中心对称图形B.等边三角形既是轴对称图形,又是中心对称图形C.等边三角形是中心对称图形,但不是轴对称图形D.等边三角形既不是轴对称图形,也不是中心对称图形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平面直角坐标系中,,,A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90°得到AB,当BK取最小值时,点B的坐标为_________.2、在平面直角坐标系中,点关于原点对称的点的坐标是______.3、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.4、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.5、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.三、解答题(5小题,每小题10分,共计50分)1、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为3,求BC的长.2、如图,和中,,,,连接,点M,N,P分别是的中点.(1)请你判断的形状,并证明你的结论.(2)将绕点A旋转,若,请直接写出周长的最大值与最小值.3、如图,已知线段,点A在线段上,且,点B为线段上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为和.若旋转后M、N两点重合成一点C(即构成),设.(1)的周长为_______;(2)若,求x的值.4、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是 对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.5、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:(1)当时,求的值;(2)当点E在线段AB上,如果,,求y关于x的函数解析式,并写出定义域;(3)联结AM,直线AM与直线BC交于点G,当时,求AE的值. -参考答案-一、单选题1、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.2、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OA•sin∠OAB=, ∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 即, , 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.3、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接, ,,与圆相切于点,,,故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.4、A【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O的半径为4,点P 在⊙O外部,∴OP需要满足的条件是OP>4,故选:A.【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.5、D【分析】连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.【详解】解:连接OF,OE,OG,∵AB、BC、CD分别与相切,∴,,,且,∴OB平分,OC平分,∴,,∵,∴,∴,∴,,∴,∴,故选:D.【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.6、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.【详解】解:由图可知:阴影部分的面积=扇形扇形,由旋转性质可知:,,,,在中,,,,,,有勾股定理可知:,阴影部分的面积=扇形扇形 .故选:B.【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.7、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C.【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.8、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).故选:B.【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.9、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、A【分析】根据等边三角形的对称性判断即可.【详解】∵等边三角形是轴对称图形,但不是中心对称图形,∴B,C,D都不符合题意;故选:A.【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.二、填空题1、【分析】如图,作BH⊥x轴于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,作KM⊥EF于M,根据垂线段最短可知,当点B与点M重合时,BK的值最小,利用等腰直角三角形的性质可得M的坐标,从而可得答案.【详解】解:如图,作BH⊥x轴于H.∵C(0,4),K(2,0),∴OC=4,OK=2,∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,∴∠ACO=∠BAH,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,则 作KM⊥EF于M,过作于 则 根据垂线段最短可知,当点B与点M重合时,BK的值最小,此时B(3,﹣1),故答案为:(3,﹣1)【点睛】本题考查坐标与图形的变化﹣旋转,全等三角形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是正确寻找点B的运动轨迹,学会利用垂线段最短解决最短问题.2、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.3、35°【分析】利用圆周角定理求出所求角度数即可.【详解】解:与都对,且,,故答案为:.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.4、3【分析】过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解.【详解】解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,∵=, AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6, ∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,则,∴AD=DF+AF=3+2,故答案为:3+2.【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.5、65【分析】连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.【详解】解:如图所示:连接OA,OC,OB,∵PA、PB、DE与圆相切于点A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案为:65.【点睛】题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.三、解答题1、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长.(1)证明:连接,如图所示:是的直径,,,,,,,即,是的切线;(2)解:的半径为,,,,,,,,又,,,即,.【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.2、(1)是等腰直角三角形,证明见解析(2)周长最小值为。最大值为【分析】(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.(1)连接BD,CE,如图,∵,,,∴ ∴ ∴∴BD=CE,∵点M,N,P分别是的中点∴//,,PN//BD,PN=BD∴PM=PN, ∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90°∴ ∴是等腰直角三角形;(2)由(1)知,是等腰直角三角形∴ ∴的周长为 ∵ ∴的周长为 当BD最小时即点D在AB上,此时周长最小,∵AB=8,AD=3∴BD的最小值为AB-AD=8-3=5∴周长最小为当点D在BA的延长线上时,BD最大,此时周长最大,∴BD=AB+AD=8+3=11∴周长最大为【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.3、(1)4(2)【分析】(1)由旋转知:AM=AC=1,BN=BC,将△ABC的周长转化为MN;(2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.(1)解:由旋转知:AM=AC=1,BN=BC=3-x,∴△ABC的周长为:AC+AB+BC=MN=4;故答案为:4;(2)解:∵α+β=270°,∴∠CAB+∠CBA=360°-270°=90°,∴∠ACB=180°-(∠CAB+∠CBA)=180°-90°=90°,∴AC2+BC2=AB2,即12+(3-x)2=x2,解得.【点睛】本题主要考查了旋转的性质,勾股定理等知识,证明∠ACB=90°是解题的关键.4、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形.【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.5、(1);(2),0≤x≤1;(3)AE的值为或.【分析】(1)过点E作EH⊥BD与H,根据正方形的边长为1,,求出EB=1-,根据正方形性质可求∠ABD=45°,根据EH⊥BD,得出∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;(2)解:根据AE=x,求出BE=1-x,根据旋转将△ADE绕点D针旋转90°,得到△DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证△DEF为等腰直角三角形,先证△BEM∽△FDM,得出,再证△EMD∽△BMF,得出,两式相乘得出,整理即可;(3)当点G在BC上,,先证△BGM∽△DAM,得出,由(2)知△BEM∽△FDM,得出,得出,结合,消去y, 当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,证明△BGM∽△DAM,得出,根据∠LBM=∠CBD=45°,ML⊥BC,证出△MLB为等腰直角三角形,再证△MLB∽△DCB,,CD=1,ML=,ML∥BE,结合△LMF∽△BEF,得出即解方程即可.(1)解:过点E作EH⊥BD与H,∵正方形的边长为1,,∴EB=1-,∵BD为正方形对角线,∴BD平分∠ABC,∴∠ABD=45°,∵EH⊥BD,∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,∴EH=BH,∴EH=BH=BEsin45=,AB=BDcos45°,∴,∴DH=DB-BH=,;(2)解:如上图,∵AE=x,∴BE=1-x,∵将△ADE绕点D针旋转90°,得到△DCF,∴CF=AE=x,ED=FD=,∴BF=BC+CF=1+x,在Rt△EBF中EF=,∵∠EDF=90°,ED=FD,∴△DEF为等腰直角三角形,∴∠DFE=∠DEF=45°,∴∠EBM=∠MFD=45°,∵∠EMB=∠DMF,∴△BEM∽△FDM,∴,即,∵∠DEM=∠FBM=45°,∠EMD=∠BMF,∴△EMD∽△BMF,∴,即,∴,∴,∴即,∴,0≤x≤1;(3)解:当点G在BC上,,∵四边形ABCD为正方形,∴AD∥BG,∴∠DAM=∠BGM,∠ADM=∠GBM,∴△BGM∽△DAM,∴,∵由(2)知△BEM∽△FDM,∴,∵DB=,∴,∴,∴,∵,∴即,解,舍去;当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,∵GB∥AD,∴∴∠DAM=∠BGM,∠ADM=∠GBM,∴△BGM∽△DAM,∴,∴,∴,∵∠LBM=∠CBD=45°,ML⊥BC,∴△MLB为等腰直角三角形,∵ML∥CD,∴∠LMB=∠CDB,∠L=∠DCB,∴△MLB∽△DCB,∴,CD=1,∴ML=∵ML∥BE,∴∠L=∠FBE,∠LMF=∠BEF,∴△LMF∽△BEF,∴,∵BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,∴,整理得:,解得,舍去,∴AE的值为或.【点睛】本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试练习,共27页。试卷主要包含了在圆内接四边形ABCD中,∠A,如图,是的直径,等内容,欢迎下载使用。
这是一份数学九年级下册第24章 圆综合与测试同步训练题,共38页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步测试题,共37页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)