终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪科版九年级数学下册第24章圆达标测试试题(含答案及详细解析)

    立即下载
    加入资料篮
    2022年精品解析沪科版九年级数学下册第24章圆达标测试试题(含答案及详细解析)第1页
    2022年精品解析沪科版九年级数学下册第24章圆达标测试试题(含答案及详细解析)第2页
    2022年精品解析沪科版九年级数学下册第24章圆达标测试试题(含答案及详细解析)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试随堂练习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试随堂练习题,共33页。
    沪科版九年级数学下册第24章圆达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,,将绕点C逆时针旋转90°得到,则的度数为(    A.105° B.120° C.135° D.150°2、下列图形中,既是轴对称图形又是中心对称图形的是(  )A. B. C.  D.3、如图,四边形内接于,如果它的一个外角,那么的度数为(    A. B. C. D.4、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为(    A.4 B.6 C.8 D.105、如图,AB是⊙O的直径,弦,则阴影部分图形的面积为(    A. B. C. D.6、如图,在中,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于(    A. B. C. D.7、在下列图形中,既是中心对称图形又是轴对称图形的是(   A.  B. C.  D.8、的边经过圆心与圆相切于点,若,则的大小等于(    A. B. C. D.9、平面直角坐标系中点关于原点对称的点的坐标是(    A. B. C. D.10、下列判断正确的个数有(    ①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______. 2、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.3、如图,在平面直角坐标系xOy中,Px轴正半轴上一点.已知点的外接圆.(1)点M的纵坐标为______;(2)当最大时,点P的坐标为______.4、如图,PAPB分别切⊙O于点ABQ是优弧上一点,若∠P=40°,则∠Q的度数是________.5、一个正多边形的中心角是,则这个正多边形的边数为________.三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点CA的对应点分别为EF.点E落在BA上,连接AF(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.2、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.(1)请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;(2)把图③补成只是中心对称图形,并把中心标上字母P3、解题与遐想.如图,RtABC的内切圆与斜边AB相切于点DAD=4,BD=5.求RtABC的面积.王小明:这道题算出来面积刚好是20,太凑巧了吧.刚好是4×5=20,有种白算的感觉…赵丽华:我把4和5换成mn再算一遍,△ABC的面积总是mn!确实非常神奇了…数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了.我怎么想不出来呢?计算验证(1)通过计算求出RtABC的面积.拼图演绎(2)将RtABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明.尺规作图(3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个RtABC,使它的内切圆与斜边AB相切于点D.(保留作图的痕迹,写出必要的文字说明)4、在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形MN的“近距离”,记为d(MN),特别地,若图形MN有公共点,规定d(MN)=0.已知:如图,点A(,0),B(0,).(1)如果⊙O的半径为2,那么d(A,⊙O)=        d(B,⊙O)=        (2)如果⊙O的半径为r,且d(⊙O,线段AB)=0,求r的取值范围;(3)如果C(m,0)是x轴上的动点,⊙C的半径为1,使d(⊙C,线段AB)<1,直接写出m的取值范围.5、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接(1)如图1,当三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接交于点.若,请直接写出的值. -参考答案-一、单选题1、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.2、B【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B.既是轴对称图形,又是中心对称图形,故符合题意;C.不是轴对称图形,是中心对称图形,故不符合题意;D.是轴对称图形,不是中心对称图形,故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、D【分析】由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.【详解】∵四边形内接于又∵故选:D.【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.4、A【分析】根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB是⊙O的直径,∵∠BAC=30°,BC=2,故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.5、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.【详解】解:设ABCD交于点EAB是⊙O的直径,弦CDABCD=2,如图,CE=CD=,∠CEO=∠DEB=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠OCE=30°,又∵,即在△OCE和△BDE中,∴△OCE≌△BDEAAS),∴阴影部分的面积S=S扇形COB=故选D.【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.6、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.【详解】解:连接CD,如图所示:∵点DAB的中点,在Rt△ACB中,由勾股定理可得故选D.【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.7、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.8、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接 与圆相切于点故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.9、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.10、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.二、填空题1、6【分析】如图,连接OAOBOCODOEOF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OAOBOCODOEOF∵正六边形ABCDEFABBCCDDEEFFA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,的周长为的半径为正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.2、60【分析】根据弧长公式求解即可.【详解】解:解得,故答案为:60.【点睛】本题考查了弧长公式,灵活应用弧长公式是解题的关键.3、5    (4,0)    【分析】(1)根据点M在线段AB的垂直平分线上求解即可;(2)点P在⊙M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可.【详解】解:(1)∵⊙M为△ABP的外接圆,∴点M在线段AB的垂直平分线上,A(0,2),B(0,8),∴点M的纵坐标为:故答案为:5;(2)过点,作⊙Mx轴相切,则点M在切点处时,最大,理由:若点x轴正半轴上异于切点P的任意一点,交⊙M于点E,连接AE,则∠AEB=∠APB∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即点P在切点处时,∠APB最大,∵⊙M经过点A(0,2)、B(0,8),∴点M在线段AB的垂直平分线上,即点M在直线y=5上,∵⊙Mx轴相切于点PMPx轴,从而MP=5,即⊙M的半径为5,AB的中点为D,连接MDAM,如上图,则MDABAD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四边形OPMD是矩形,从而OP=MD由勾股定理,得MD=OP=MD=4,∴点P的坐标为(4,0),故答案为:(4,0).【点睛】本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.4、70°度【分析】连接OAOB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.【详解】解:连接OAOBPAPB分别切⊙O于点AB∴∠OAP=∠OBP=90°,又∠P=40°,∴∠AOB=360°-90°-90°-40°=140°,∴∠Q=AOB=70°,故答案为:70°.【点睛】本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.5、九9【分析】根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.【详解】解:设这个正多边形的边数为n∵这个正多边形的中心角是40°,∴这个正多边形是九边形,故答案为:九.【点睛】本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.三、解答题1、(1)65°(2)【分析】(1)根据三角形的内角和定理得到∠ABC=50°,根据旋转的性质得到∠EBF=∠ABC=50°,AB=BF,根据三角形的内角和定理即可得到结论;(2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论.【小题1】解:在RtABC中,∠C=90°,∠BAC=40°,∴∠ABC=50°,∵将△ABC绕着点B逆时针旋转得到△FBE∴∠EBF=∠ABC=50°,AB=BF∴∠BAF=∠BFA=(180°-50°)=65°;【小题2】∵∠C=90°,AC=8,BC=6,AB=10,∵将△ABC绕着点B逆时针旋转得到△FBEBE=BC=6,EF=AC=8,AE=AB-BE=10-6=4,AF=【点睛】本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键.2、(1)见解析(2)见解析【分析】(1)根据轴对称图形,中心对称图形的性质画出图形即可.(2)根据中心对称图形的定义画出图形即可.(1)解:图形如图①②所示.(2)解:图形如图③所示,点P即为所求作.【点睛】本题考查利用旋转变换设计图案,正方形的性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3、(1)SABC=20;(2)见解析;(3)见解析.【分析】(1)设⊙O的半径为r,由切线长定理得,AEAD=4,BFBD=5,CECFr,由勾股定理得,(r+4)2+(r+5)2=92,进而求得结果;(2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;(3)可先计算∠AFB=135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点FAB的垂线,再根据直径所对的圆周角是90°,确定点C【详解】解:(1)如图1,设⊙O的半径为r连接OEOF∵⊙O内切于△ABCOEACOFBCAEAD=4,BFBD=5,∴∠OEC=∠OFC=∠C=90°,∴四边形ECFO是矩形,CFOErCEOFrAC=4+rBC=5+r在Rt△ABC中,由勾股定理得,r+4)2+(r+5)2=92r2+9r=20,SABC=20;(2)如图2,(3)设△ABC的内切圆记作⊙FAFBF平分∠BAC和∠ABCFDAB∴∠BAFCAB,∠ABF∴∠BAF+∠ABF(∠BAC+∠ABC)==45°,∴∠AFB=135°,可以按以下步骤作图(如图3):①以BA为直径作圆,作AB的垂直平分线交圆于点E②以E为圆心,AE为半径作圆,③过点DAB的垂线,交圆于F④连接EF并延长交圆于C,连接ACBC则△ABC就是求作的三角形.【点睛】本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键.4、(1)0,;(2);(3)【分析】(1)根据新定义,即可求解;(2)过点OODAB于点D,根据三角形的面积,可得,再由d(⊙O,线段AB)=0,可得当⊙O的半径等于OD时最小,当⊙O的半径等于OB时最大,即可求解;(3)过点CCNAB于点N ,利用锐角三角函数,可得∠OAB=60°,然后分三种情况:当点C在点A的右侧时,当点C与点A重合时,当点C在点A的左侧时,即可求解.【详解】解:(1)∵⊙O的半径为2,A(,0),B(0,).∴点A在⊙O上,点B在⊙O外,dA,⊙O)=dB,⊙O)=(2)过点OODAB于点D∵点A(,0),B(0,). d(⊙O,线段AB)=0,∴当⊙O的半径等于OD时最小,当⊙O的半径等于OB时最大,r的取值范围是(3)如图,过点CCNAB于点N∵点A(,0),B(0,).∴∠OAB=60°,C(m,0),当点C在点A的右侧时,d(⊙C,线段AB)<1,⊙C的半径为1, ,解得:当点C与点A重合时,此时d(⊙C,线段AB)=0,当点C在点A的左侧时, ,解得:【点睛】本题主要考查了点与圆的位置关系,点与直线的位置关系,理解新定义,熟练掌握点与圆的位置关系,点与直线的位置关系是解题的关键.5、(1);(2);证明见解析;(3)【分析】(1)过点于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,,勾股定理即可求解;(2)延长,使得,连接,过点,交于点,根据平行四边形的性质可得,,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得(3)过点于点,过点,连接,交于点,过点,交于点,过点于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点于点,如图绕点顺时针旋转120°,得到是等边三角形中,(2)如图,延长,使得,连接,过点,交于点的中点四边形是平行四边形绕点顺时针旋转120°,得到是等边三角形是等边三角形,则,,是等边三角形(3) 如图,过点于点,过点,连接,交于点,过点,交于点,过点于点四点共圆由(2)可知绕点顺时针旋转120°,得到的中点,的中位线是等腰直角三角形四边形是矩形中,,中,【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试测试题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试测试题,共33页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试精练:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试精练,共27页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试同步达标检测题:

    这是一份初中数学第24章 圆综合与测试同步达标检测题,共28页。试卷主要包含了如图,一个宽为2厘米的刻度尺,下列语句判断正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map