终身会员
搜索
    上传资料 赚现金

    2022年精品解析沪科版九年级数学下册第24章圆重点解析试卷(无超纲带解析)

    立即下载
    加入资料篮
    2022年精品解析沪科版九年级数学下册第24章圆重点解析试卷(无超纲带解析)第1页
    2022年精品解析沪科版九年级数学下册第24章圆重点解析试卷(无超纲带解析)第2页
    2022年精品解析沪科版九年级数学下册第24章圆重点解析试卷(无超纲带解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共26页。


    沪科版九年级数学下册第24章圆重点解析

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是(  

    A.它们的开口方向相同 B.它们的对称轴相同

    C.它们的变化情況相同 D.它们的顶点坐标相同

    2、下列各点中,关于原点对称的两个点是(  )

    A.(﹣5,0)与(0,5) B.(0,2)与(2,0)

    C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)

    3、如图,PAPB是⊙O的切线,AB为切点,PA=4,则PB的长度为(   

    A.3 B.4 C.5 D.6

    4、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(   

    A.3 B.1 C. D.

    5、如图,在RtABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=(  )

    A.10 B.2 C.2 D.4

    6、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是(   

    A. B. C. D.

    7、下列图形中,可以看作是中心对称图形的是(   

    A. B. C. D.

    8、下列图形中,既是轴对称图形又是中心对称图形的是(      

    A. B. C. D.

    9、如图,ABC是正方形网格中的三个格点,则是(   

    A.优弧 B.劣弧 C.半圆 D.无法判断

    10、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为(   

    A.30° B.60°

    C.90° D.120°

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.

    2、如图,在⊙O中,AB=10,BC=12,D上一点,CD=5,则AD的长为______.

    3、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).

    4、一条弧所对的圆心角为,弧长等于,则这条弧的半径为________.

    5、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D

    (1)弦AB的长为         

    (2)求劣弧的长.

    2、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D

    (1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);

    (2)在(1)所作的图中,连接CD,若CDBD,且AC=6.求劣弧的长.

    3、如图,正方形ABCD的顶点ABx轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A按顺时针方向旋转,BCD的对应点分别为B1C1D1,且D1C1O三点在一条直线上.记点D1的坐标是(mn),C1的坐标是(pq).

    (1)设∠DAD1=30°,n=2,求证:OD1的长度;

    (2)若∠DAD1<90°,mn满足m+n=﹣4,p2+q2=25,求p+q的值.

    4、如图,,点D上一点,相交于点F,且

    (1)求证:

    (2)求证:

    (3)若点D中点,连接,求证:平分

    5、如图,已知的直径,的切线,C为切点,于点E平分

    (1)求证:

    (2)求的长.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    根据旋转的性质及抛物线的性质即可确定答案.

    【详解】

    抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.

    故选:B

    【点睛】

    本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.

    2、D

    【分析】

    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.

    【详解】

    解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;

    B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;

    C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;

    D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;

    故选:D

    【点睛】

    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.

    3、B

    【分析】

    由切线的性质可推出.再根据直角三角形全等的判定条件“HL”,即可证明,即得出

    【详解】

    PAPB是⊙O的切线,AB为切点,

    ∴在中,

    故选:B

    【点睛】

    本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.

    4、D

    【分析】

    根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.

    【详解】

    解:如图,设相交于点

    旋转,

    是等边三角形,

    阴影部分的面积为

    故选D

    【点睛】

    本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.

    5、D

    【分析】

    首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在RtB'C'C中利用勾股定理求解.

    【详解】

    解:∵在RtABC中,AB=6,BC=8,

    由旋转性质可知,AB= AB'=6,BC= B'C'=8,

    B'C=10-6=4,

    RtB'C'C中,

    故选:D.

    【点睛】

    本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.

    6、C

    【分析】

    如图,过点CCTAB于点T,过点OOHAB于点H,交⊙O于点K,连接AOAK,解直角三角形求出AB,求出CT的最大值,可得结论.

    【详解】

    解:如图,过点CCTAB 于点T,过点OOHAB于点H,交⊙O于点K,连接AOAK

    由题意可得AB垂直平分线段OK

    AO=AKOH=HK=3,

    OA=OK

    OA=OK=AK

    ∴∠OAK=∠AOK=60°,

    AH=OA×sin60°=6×=3

    OHAB

    AH=BH

    AB=2AH=6

    OC+OHCT

    CT⩽6+3=9,

    CT的最大值为9,

    ∴△ABC的面积的最大值为=27

    故选:C.

    【点睛】

    本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.

    7、B

    【分析】

    把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.

    【详解】

    A.不是中心对称图形,故本选项不符合题意;

    B.是中心对称图形,故本选项符合题意;

    C.不是中心对称图形,故本选项不符合题意;

    D.不是中心对称图形,故本选项不符合题意.

    故选:B.

    【点睛】

    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    8、D

    【详解】

    解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;

    .不是轴对称图形,是中心对称图形,故本选项不符合题意;

    .是轴对称图形,不是中心对称图形,故本选项不符合题意;

    .既是轴对称图形,又是中心对称图形,故本选项符合题意.

    故选:D.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    9、B

    【分析】

    根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.

    【详解】

    解;如图,分别连接ABACBC,取任意两条线段的中垂线相交,交点就是圆心.

    故选:B.

    【点睛】

    本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.

    10、B

    【分析】

    由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.

    【详解】

    解:因为每次旋转相同角度,旋转了六次,

    且旋转了六次刚好旋转了一周为360°,

    所以每次旋转相同角度 .

    故选:B.

    【点睛】

    本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.

    二、填空题

    1、2

    【分析】

    根据扇形的面积公式S,代入计算即可.

    【详解】

    解:∵“完美扇形”的周长等于6,

    ∴半径r=2,弧长l为2,

    这个扇形的面积为:=2.

    答案为:2.

    【点睛】

    本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.

    2、3

    【分析】

    AAEBCE,过CCFADF,根据圆周角定理可得∠ACB=∠B=∠DAB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AEDFCF AF即可求解.

    【详解】

    解:过AAEBCE,过CCFADF,则∠AEB=∠CFD=90°,

    AB=10,

    ∴∠ACB=∠B=∠DAB=AC=10,

    AEBCBC=12,

    BE=CE=6, 

    ∵∠B=∠D,∠AEB=∠CFD=90°,

    ∴△ABE∽△CDF

    AB=10,CD=5,BE=6,AE=8,

    解得:DF=3,CF=4,

    RtAFC中,∠AFC=90°,AC=10,CF=4,

    AD=DF+AF=3+2

    故答案为:3+2

    【点睛】

    本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.

    3、20

    【分析】

    先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.

    【详解】

    ∵矩形ABCD绕点A顺时针旋转到矩形ABCD′的位置,

    ∴∠ADC=∠D=90°,∠DAD′=α

    ∵∠ABC=90°,

    ∴∠BAD’=180°-∠1=180°-110°=70°,

    ∴∠DAD′=90°-70°=20°,

    α=20°.

    故答案为20.

    【点睛】

    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.

    4、9cm

    【分析】

    由弧长公式即可求得弧的半径.

    【详解】

    故答案为:9cm

    【点睛】

    本题考查了扇形的弧长公式,善于对弧长公式变形是关键.

    5、6

    【分析】

    依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;

    【详解】

    设直角三角形中能容纳最大圆的半径为:

    依据直角三角形的性质:可得斜边长为:

    依据直角三角形面积公式:,即为

    内切圆半径面积公式:,即为

    所以,可得:,所以直径为:

    故填:6;

    【点睛】

    本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;

    三、解答题

    1、(1),(2)

    【分析】

    (1)根据弦AB垂直平分半径OCOC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×

    (2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.

    【详解】

    解:(1)∵弦AB垂直平分半径OCOC=OB=10cm,

    OD=CD=,∠ODB=90°,

    AB=2BD=2×

    故答案为

    (2)cos∠DOB=

    ∴∠DOB=60°,

    的度数为2×60°=120°,

    【点睛】

    本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键.

    2、(1)作图见解析;(2)

    【分析】

    (1)由于D点为⊙O的切点,即可得到OC=OD,且ODAB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;

    (2)连接CDOD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.

    【详解】

    解:(1)如图所示,先作∠A的角平分线,交BCO点,以O为圆心,OC为半径画出⊙O即为所求;

    (2)如图所示,连接CDOD

    由题意,AD为⊙O的切线,

    OCAC,且OC为半径,

    AC为⊙O的切线,

    AC=AD

    ∴∠ACD=∠ADC

    CD=BD

    ∴∠B=∠DCB

    ∵∠ADC=∠B+∠BCD

    ∴∠ACD=∠ADC=2∠DCB

    ∵∠ACB=90°,

    ∴∠ACD+∠DCB=90°,

    即:3∠DCB=90°,

    ∴∠DCB=30°,

    OC=OD

    ∴∠DCB=∠ODC=30°,

    ∴∠COD=180°-2×30°=120°,

    ∵∠DCB=∠B=30°,

    ∴在RtABC中,∠BAC=60°,

    AO平分∠BAC

    ∴∠CAO=∠DAO=30°,

    ∴在RtACO中,

    【点睛】

    本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.

    3、(1)4;(2)-1或-7

    【分析】

    (1)如图,三点在一条直线上的情况,连接,过点作垂线交点为,在直角三角形中,,可求的长;

    (2)如图,过点作垂线交点为,过点轴垂线交于点,作交点为;由,知,点G坐标为,得,由的值,从而得到的值.

    【详解】

    解:(1)∵∠DAD1=30°且D1C1O三点在一条直线上

    ∴如图所示,连接,过点作垂线交点为

    (2)如图过点作垂线交点为,过点轴垂线交于点,作交点为

    点横坐标可表示为

    p+q=-7或-1.

    【点睛】

    本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系.

    4、(1)证明见解析;(2)证明见解析;(3)证明见解析

    【分析】

    (1)在中,,故可证明三角形相似.

    (2)由得出

    (3)法一:由题意知,由,有,所以可得,又因为可得;由于,进而说明,得出平分.法二:通过得出FDCE四点共圆,由,从而得出平分

    【详解】

    解:(1)证明在

    (2)证明:在

    (3)证明:

    D中点

    平分

    法二:

    FDCE四点共圆

    D点,

    平分

    【点睛】

    本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知识点.解题的关键与难点在于角度的转化.解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解.

    5、(1)90°;(2)AC=DE=1

    【分析】

    (1)如图,可知

    (2)可求出的长;可求出的长.

    【详解】

    解(1)证明如图所示,连接

    是直径,的切线,平分

    (2)解∵

    【点睛】

    本题考查了角平分线、勾股定理、等腰三角形的性质、三角形相似的判定等知识点.解题的关键在于判定三角形相似.

     

    相关试卷

    数学九年级下册第24章 圆综合与测试练习题:

    这是一份数学九年级下册第24章 圆综合与测试练习题,共30页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。

    2021学年第24章 圆综合与测试当堂检测题:

    这是一份2021学年第24章 圆综合与测试当堂检测题,共35页。试卷主要包含了下列判断正确的个数有,如图,是的直径,等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试练习:

    这是一份数学九年级下册第24章 圆综合与测试练习,共48页。试卷主要包含了等边三角形等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map