终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪科版九年级数学下册第24章圆定向练习试卷(精选含详解)

    立即下载
    加入资料篮
    2022年精品解析沪科版九年级数学下册第24章圆定向练习试卷(精选含详解)第1页
    2022年精品解析沪科版九年级数学下册第24章圆定向练习试卷(精选含详解)第2页
    2022年精品解析沪科版九年级数学下册第24章圆定向练习试卷(精选含详解)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第24章 圆综合与测试同步测试题

    展开

    这是一份2021学年第24章 圆综合与测试同步测试题,共36页。
    沪科版九年级数学下册第24章圆定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )A.10 B.6 C.6 D.122、如图,CD的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于GH两点.(2)作直线GHAB于点E.(3)在直线GH上截取(4)以点F为圆心,AF长为半径画圆交CD于点P则下列说法错误的是(         A. B. C. D.3、如图,在中,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为(    A. B. C. D.4、下列图形中,可以看作是中心对称图形的是(    A. B.C. D.5、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是(    A.相离 B.相切 C.相交 D.相交或相切6、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是(   A.  B. C.  D.7、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )A.1cm B.2cm C.2cm D.4cm8、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为(    A.36 cm B.27 cm C.24 cm D.15 cm9、下列汽车标志中既是轴对称图形又是中心对称图形的是(    A. B. C. D.10、如图,AB是⊙O的直径,弦,则阴影部分图形的面积为(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.2、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△ABC′.则图中阴影部分的面积为_____.3、一个五边形共有__________条对角线.4、如图,四边形ABCD内接于圆,ECD延长线上一点, 图中与∠ADE相等的角是 _________ .5、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).三、解答题(5小题,每小题10分,共计50分)1、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接(1)如图1,当三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接交于点.若,请直接写出的值.2、如图,已知等边内接于⊙OD的中点,连接DB,DC,过点CAB的平行线,交BD的延长线于点E.(1)求证:CE是⊙O的切线;(2)若AB的长为6,求CE的长.3、如图,AB的直径,CD的一条弦,且于点E(1)求证:(2)若,求的半径.4、在平面直角坐标系xOy中,⊙O的半径为1.对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦AB′,则称线段AB是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.(1)如图,线段CDEFGH中是⊙O的以直线l为对称轴的“反射线段”有      (2)已知A点坐标为(0,2),B点坐标为(1,1),①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴ly轴的交点M的坐标.②若将“反射线段”AB沿直线yx的方向向上平移一段距离S,其反射轴ly轴的交点的纵坐标yM的取值范围为yM,求S(3)已知点MN是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.(4)已知点MN是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴ly轴交点的纵坐标的取值范围.5、如图,四边形的内接四边形,(1)求的度数.(2)求的度数. -参考答案-一、单选题1、D【分析】连接OBOC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OBOC∵∠BAC=30°,∴∠BOC=60°.OB=OCBC=6,∴△OBC是等边三角形,OB=BC=6.∴⊙O的直径等于12.故选:D.【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.2、C【分析】连接AFBF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.【详解】解:连接AFBF,由作法可知,FE垂直平分AB,故A正确;CD的高,,故B正确;,故C错误;∴∠AFE=45°,同理可得∠BFE=45°,∴∠AFB=90°,,故D正确;故选:C.【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.3、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.【详解】解:由图可知:阴影部分的面积=扇形扇形由旋转性质可知:中,有勾股定理可知:阴影部分的面积=扇形扇形 故选:B.【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.4、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.5、B【分析】圆的半径为 圆心O到直线l的距离为时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解:O的直径为10cm,圆心O到直线l的距离为5cm,  O的半径等于圆心O到直线l的距离, 直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.6、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.【详解】解:A、不是中心对称图形,故A错误.B、不是中心对称图形,故B错误.C、是中心对称图形,故C正确.D、不是中心对称图形,故D错误.故选:C.【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.7、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过 设半径为r,即OA=OB=AB=rOM=OA•sin∠OAB=∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.8、C【分析】连接,过点于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.【详解】解:连接,过点于点,交于点,如图所示:的直径为中,即水的最大深度为故选:C.【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.9、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.【详解】解:设ABCD交于点EAB是⊙O的直径,弦CDABCD=2,如图,CE=CD=,∠CEO=∠DEB=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠OCE=30°,又∵,即在△OCE和△BDE中,∴△OCE≌△BDEAAS),∴阴影部分的面积S=S扇形COB=故选D.【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.二、填空题1、【分析】如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.【详解】解:如图, ∵四边形CDEF为正方形,∴∠D=90°,CD=DECE是直径,∠ECD=45°,根据题意得:AB=2.5,即此斛底面的正方形的边长为 尺.故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.2、【分析】利用勾股定理求出ACAB的长,根据阴影面积等于求出答案.【详解】解:由旋转得=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,AC=2BC=2,AB=∴阴影部分的面积==,故答案为:【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.3、5【分析】n边形的对角线有: 条,再把代入计算即可得.【详解】解:边形共有条对角线,五边形共有条对角线.故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.4、∠ABC【分析】根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果.【详解】解:∵四边形ABCD内接于圆,ECD延长线上一点,故答案为:【点睛】题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.5、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形ABCD′的位置,∴∠ADC=∠D=90°,∠DAD′=α∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.三、解答题1、(1);(2);证明见解析;(3)【分析】(1)过点于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,,勾股定理即可求解;(2)延长,使得,连接,过点,交于点,根据平行四边形的性质可得,,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得(3)过点于点,过点,连接,交于点,过点,交于点,过点于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点于点,如图绕点顺时针旋转120°,得到是等边三角形中,(2)如图,延长,使得,连接,过点,交于点的中点四边形是平行四边形绕点顺时针旋转120°,得到是等边三角形是等边三角形,则,,是等边三角形(3) 如图,过点于点,过点,连接,交于点,过点,交于点,过点于点四点共圆由(2)可知绕点顺时针旋转120°,得到的中点,的中位线是等腰直角三角形四边形是矩形中,,中,【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键.2、(1)见解析;(2)3【分析】(1)由题意连接OCOB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.【详解】解:(1)证明:如图连接OC、OB是等边三角形    又 ∵与⊙O相切; (2)∵四边形ABCD是⊙O的内接四边形,D的中点,     【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.3、(1)见解析;(2)3【分析】(1)根据∠D=∠B,∠BCO=∠B,代换证明;(2)根据垂径定理,得CE=,利用勾股定理计算即可.【详解】(1)证明:OCOB∴∠BCO=∠B∴∠B=∠D∴∠BCO=∠D(2)解:∵AB是⊙O的直径,且CDAB于点ECECDCDCERtOCE中,OE=1,∴⊙O的半径为3.【点睛】本题考查了圆周角定理,垂径定理,勾股定理,结合图形,熟练运用三个定理是解题的关键.4、(1)EF、CD;(2)①;②;(3);(4)【分析】(1)的半径为1,则的最长的弦长为2,根据两点的距离可得,进而即可求得答案;(2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求的坐标;②由①可得当时,yM,设当取得最大值时,过点轴,根据题意,分别为沿直线yx的方向向上平移一段距离S的对应点,则,根据余弦求得进而代入数值列出方程,解方程即可求得的最大值,进而求得的范围;(3)根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过的垂线,则即为反射轴,反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线,求得半径为,根据圆的面积公式进行计算即可;(4)根据(2)的方法找到所在的圆心,当M点在圆上运动一周时,如图,取的中点的中点,即的中点在以为圆心,半径为的圆上运动,进而即可求得反射轴ly轴交点的纵坐标的取值范围【详解】(1)的半径为1,则的最长的弦长为2根据两点的距离可得故符合题意的“反射线段”有EF、CD故答案为:EF、CD(2)①如图,过点轴于点,连接 A点坐标为(0,2),B点坐标为(1,1),,且的半径为1,,且线段AB是⊙O的以直线l为对称轴的“反射线段”,②由①可得当时,yM如图,设当取得最大值时,过点轴,根据题意,分别为沿直线yx的方向向上平移一段距离S的对应点,则中点,作直线轴于点,则即为反射轴yM解得(舍)(3)的半径为1,则是等边三角形,根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过的垂线,则即为反射轴, 反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线M点在圆上运动一周时,求反射轴l未经过的区域的面积为(4)如图,根据(2)的方法找到所在的圆心,,是等腰直角三角形,M点在圆上运动一周时,如图,取的中点的中点的中位线,的中点在以为圆心,半径为的圆上运动MN是⊙O的以直线l为对称轴的“反射线段”,则的切线轴交于点同理可得反射轴ly轴交点的纵坐标的取值范围为【点睛】本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.5、(1)70°;(2)103°【分析】(1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;(2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可.【详解】解:(1)中,(2)由圆周角定理,得【点睛】题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键. 

    相关试卷

    初中数学第24章 圆综合与测试练习:

    这是一份初中数学第24章 圆综合与测试练习,共26页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第26章 概率初步综合与测试随堂练习题:

    这是一份沪科版九年级下册第26章 概率初步综合与测试随堂练习题

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共25页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map