2020-2021学年第24章 圆综合与测试一课一练
展开这是一份2020-2021学年第24章 圆综合与测试一课一练,共27页。
沪科版九年级数学下册第24章圆定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
A.2个 B.3个 C.4个 D.5个
2、下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
3、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )
A.19° B.38° C.52° D.76°
4、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
5、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )
A. B. C.3 D.
6、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
A.3π B.6π C.12π D.18π
7、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是( )
A. B.
C.或 D.(﹣2,0)或(﹣5,0)
8、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
9、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<2
10、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,已知点与点关于原点对称,则________,________.
2、若一次函数y=kx+8(k≠0)的图象与x轴、y轴分别交于A、B两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90°得到BQ,连接OQ,则OQ长的最小值是 ___.
3、已知正多边形的半径与边长相等,那么正多边形的边数是______.
4、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.
5、如图,AB是半圆O的直径,点D在半圆O上,,,C是弧BD上的一个动点,连接AC,过D点作于H.连接BH,则在点C移动的过程中,线段BH的最小值是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.
(1)求∠ABD的度数;
(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;
(3)在(2)的条件下,求的长.
2、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).
(1)直接写出点B关于原点对称的点B′的坐标: ;
(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
3、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.
(1)求证:AD∥EC;
(2)若AD=6,求线段AE的长.
4、如图,将一个直径AB等于12厘米的半圆绕着点A逆时针旋转60°后,点B落到了点C的位置,半圆扫过部分的图形如阴影部分所示.
(1)阴影部分的周长;
(2)阴影部分的面积.(结果保留π)
5、在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N),特别地,若图形M,N有公共点,规定d(M,N)=0.已知:如图,点A(,0),B(0,).
(1)如果⊙O的半径为2,那么d(A,⊙O)= ,d(B,⊙O)= .
(2)如果⊙O的半径为r,且d(⊙O,线段AB)=0,求r的取值范围;
(3)如果C(m,0)是x轴上的动点,⊙C的半径为1,使d(⊙C,线段AB)<1,直接写出m的取值范围.
-参考答案-
一、单选题
1、A
【分析】
根据轴对称图形与中心对称图形的概念进行判断.
【详解】
解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
共2个既是轴对称图形又是中心对称图形.
故选:A.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
2、B
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.
【详解】
A.不是中心对称图形,故本选项不符合题意;
B.是中心对称图形,故本选项符合题意;
C.不是中心对称图形,故本选项不符合题意;
D.不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、B
【分析】
连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
【详解】
解:连接 为的直径,
为的切线,
故选B
【点睛】
本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
4、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项不符合题意;
D、不是轴对称图形,是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、D
【分析】
连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得
【详解】
如图,连接,
,
是直角三角形,且
是等边三角形
是直径,
故选D
【点睛】
本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.
6、B
【分析】
利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
【详解】
解:它的侧面展开图的面积=×2×2×3=6(cm2).
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
7、C
【分析】
由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
【详解】
解:∵直线交x轴于点A,交y轴于点B,
∴令x=0,得y=-3,令y=0,得x=-4,
∴A(-4,0),B(0,-3),
∴OA=4,OB=3,
∴AB=5,
设⊙P与直线AB相切于D,
连接PD,
则PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP= ,
∴OP= 或OP= ,
∴P或P,
故选:C.
【点睛】
本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
8、D
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9、A
【分析】
点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.
【详解】
解:∵⊙O的半径为4,点P 在⊙O外部,
∴OP需要满足的条件是OP>4,
故选:A.
【点睛】
此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
10、D
【详解】
解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
.不是轴对称图形,是中心对称图形,故本选项不符合题意;
.是轴对称图形,不是中心对称图形,故本选项不符合题意;
.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、2 2
【分析】
关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a、b即可求得答案.
【详解】
解:∵点和点关于原点对称,
∴,
∴,
故答案为:2;2.
【点睛】
本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键.
2、8
【分析】
根据一次函数解析式可得:,,过点B作轴,过点A作,过点Q作,由旋转的性质可得,,依据全等三角形的判定定理及性质可得:≅,,,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可.
【详解】
解:函数得:,,过点B作轴,过点A作,过点Q作,连接OQ,如图所示:
将线段BA绕点B逆时针旋转得到线段BQ,
∴,,
∴
∴,
在与中,
,
∴≅,
∴,,
点Q的坐标为,
∴
当或时,取得最小值为8,
故答案为:8.
【点睛】
题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键.
3、六
【分析】
设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.
【详解】
解:设这个正多边形的边数为n,
∵正多边形的半径与边长相等,
∴OA=OB=AB,
∴△OAB是等边三角形,
∴∠AOB=60°,
∴,
∴,
∴正多边形的边数是六,
故答案为:六.
【点睛】
本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.
4、6
【分析】
依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;
【详解】
设直角三角形中能容纳最大圆的半径为:;
依据直角三角形的性质:可得斜边长为:
依据直角三角形面积公式:,即为;
内切圆半径面积公式:,即为;
所以,可得:,所以直径为:;
故填:6;
【点睛】
本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;
5、##
【分析】
连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、、三点共线时,最小;求出,在中,,所以,即为所求.
【详解】
解:连接,取的中点,连接,
,
点在以为圆心,为半径的圆上,
当、、三点共线时,最小,
是直径,
,
,,
,,
在中,,
,
故答案为:.
【点睛】
本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.
三、解答题
1、(1);(2);(3)
【分析】
(1)如图,过作 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;
(2)先求解 再结合(1)的结论可得答案;
(3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.
【详解】
解:(1)如图,过作 垂足分别为 连接
四边形为矩形,
由勾股定理可得: 而
四边形为正方形,
而
(2)如图,过作 垂足分别为
由(1)得:四边形为正方形,
OA=2,∠OAB=15°,
(3)如图,连接
【点睛】
本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.
2、(1)(4,﹣1);(2)见解析;(3)见解析.
【分析】
(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;
(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;
(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.
【详解】
(1)点B关于原点对称的点B′的坐标为(4,﹣1),
故答案为:(4,﹣1);
(2)如图所示,△A1B1C1即为所求.
(3)如图所示,△A2B2C2即为所求.
【点睛】
本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.
3、(1)见解析;(2)6
【分析】
(1)连接OC,根据CE是⊙O的切线,可得∠OCE=,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE=,即可求证;
(2)过点A作AF⊥EC交EC于点F,由∠AOC=,OA=OC,可得∠OAC=,从而得到∠BAD=,再由AD∥EC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.
【详解】
证明:(1)连接OC,
∵CE是⊙O的切线,
∴∠OCE=,
∵∠ABC=,
∴∠AOC=2∠ABC=,
∵∠AOC+∠OCE=,
∴AD∥EC;
(2)解:过点A作AF⊥EC交EC于点F,
∵∠AOC=,OA=OC,
∴∠OAC=,
∵∠BAC=,
∴∠BAD=,
∵AD∥EC,
∴,
∵∠OCE=,∠AOC=,∠AFC=90°,
∴四边形OAFC是矩形,
∵OA=OC,
∴四边形OAFC是正方形,
∴,
∵,
∴,
在Rt△AFE中,,
∴AE=2AF=6.
【点睛】
本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.
4、
(1)16π
(2)24π
【分析】
(1)由阴影部分的周长=两个半圆弧的长度+弧BC的长,利用弧长公式可求解;
(2)由面积的和差关系可求解.
(1)
解:阴影部分的周长=2××2π×6+=16π;
(2)
解:∵阴影部分的面积=S半圆+S扇形BAC﹣S半圆=S扇形BAC,
∴阴影部分的面积==24π.
答:阴影部分的周长为16π,阴影部分的面积为24π.
【点睛】
本题考查了扇形的弧长公式和面积公式,如果扇形的圆心角是n°,扇形的半径为r,则扇形的弧长l的计算公式为:,扇形的面积公式:.
5、(1)0,;(2);(3)
【分析】
(1)根据新定义,即可求解;
(2)过点O作OD⊥AB于点D,根据三角形的面积,可得,再由d(⊙O,线段AB)=0,可得当⊙O的半径等于OD时最小,当⊙O的半径等于OB时最大,即可求解;
(3)过点C作CN⊥AB于点N ,利用锐角三角函数,可得∠OAB=60°,然后分三种情况:当点C在点A的右侧时,当点C与点A重合时,当点C在点A的左侧时,即可求解.
【详解】
解:(1)∵⊙O的半径为2,A(,0),B(0,).
∴,
∴点A在⊙O上,点B在⊙O外,
∴d(A,⊙O)=,
∴d(B,⊙O)=;
(2)过点O作OD⊥AB于点D,
∵点A(,0),B(0,).
∴ ,
∴ ,
∵ ,
∴
∴,
∵d(⊙O,线段AB)=0,
∴当⊙O的半径等于OD时最小,当⊙O的半径等于OB时最大,
∴r的取值范围是,
(3)如图,过点C作CN⊥AB于点N ,
∵点A(,0),B(0,).
∴ ,
∴ ,
∴∠OAB=60°,
∵C(m,0),
当点C在点A的右侧时, ,
∴ ,
∴ ,
∵d(⊙C,线段AB)<1,⊙C的半径为1,
∴ ,解得: ,
当点C与点A重合时, ,
此时d(⊙C,线段AB)=0,
当点C在点A的左侧时, ,
∴
,
∴ ,解得: ,
∴.
【点睛】
本题主要考查了点与圆的位置关系,点与直线的位置关系,理解新定义,熟练掌握点与圆的位置关系,点与直线的位置关系是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后练习题,共30页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
这是一份初中数学第24章 圆综合与测试练习,共26页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
这是一份初中数学第24章 圆综合与测试练习,共29页。