年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪科版九年级数学下册第24章圆必考点解析试题(含详细解析)

    立即下载
    加入资料篮
    2022年精品解析沪科版九年级数学下册第24章圆必考点解析试题(含详细解析)第1页
    2022年精品解析沪科版九年级数学下册第24章圆必考点解析试题(含详细解析)第2页
    2022年精品解析沪科版九年级数学下册第24章圆必考点解析试题(含详细解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试随堂练习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试随堂练习题,共25页。试卷主要包含了在圆内接四边形ABCD中,∠A,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、平面直角坐标系中点关于原点对称的点的坐标是(    A. B. C. D.2、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是(    A. B.1 C.2 D.3、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )A.5 B. C. D.4、如图,PAPB是⊙O的切线,AB是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为(   A.70° B.50° C.20° D.40°5、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是(   A.  B. C.  D.6、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为(    A.36 cm B.27 cm C.24 cm D.15 cm7、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为(      A.140° B.100° C.80° D.40°8、点P(3,﹣2)关于原点O的对称点的坐标是(  )A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)9、下列图形中,既是轴对称图形,又是中心对称图形的是(  )A. B. C. D.10、已知⊙O的半径为4,,则点A在(      A.⊙O B.⊙O C.⊙O D.无法确定第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点N是直线上动点,M上动点,若点C的坐标为,且y轴相切,则长度的最小值为____________.2、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.3、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).4、如图,已知正方形ABCD的边长为6,ECD边上一点,将绕点A旋转至,连接,若,则的长等于______.5、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.三、解答题(5小题,每小题10分,共计50分)1、如图AB是⊙O的直径,弦CDAB于点E,作∠FAC=∠BAC,过点CCFAF于点F(1)求证:CF是⊙O的切线;(2)若sin∠CAB=,求=_______.(直接写出答案)2、如图,已知的直径,于点C,交的延长线于点D,且(1)求的大小;(2)若,求的长.3、如图,点A外一点,过点A作出的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)4、如图,AB为⊙O的弦,OCAB于点M,交⊙O于点C.若⊙O的半径为10,OMMC=3:2,求AB的长.5、如图,ABC是⊙O的内接三角形,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E(1)求证:ADEC(2)若AD=6,求线段AE的长. -参考答案-一、单选题1、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.2、A【分析】CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据∠BCH=30°求解即可.【详解】解:如图,取BC的中点G,连接MG∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBMCH是等边△ABC的对称轴,HB=ABHB=BG又∵MB旋转到BNBM=BN在△MBG和△NBH中,∴△MBG≌△NBHSAS),MG=NH根据垂线段最短,MGCH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,MG=CG=HN=故选A.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.3、D【分析】连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.【详解】解:连接OFOEOGAB、BC、CD分别与相切,,且OB平分OC平分故选:D.【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.4、D【分析】首先连接OAOB,由PAPB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.【详解】解:连接OAOBPAPB为⊙O的切线,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.5、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.【详解】解:A、不是中心对称图形,故A错误.B、不是中心对称图形,故B错误.C、是中心对称图形,故C正确.D、不是中心对称图形,故D错误.故选:C.【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.6、C【分析】连接,过点于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.【详解】解:连接,过点于点,交于点,如图所示:的直径为中,即水的最大深度为故选:C.【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.7、C【分析】,进而求解的值.【详解】解:由题意知故选C.【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.8、B【分析】根据“平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.9、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.10、C【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,d>r∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔dr;②点P在圆上⇔d=r;③点P在圆内⇔dr二、填空题1、-2【分析】由图可知,当CNABCMN三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.【详解】由图可知,当CNABCMN三点共线时,长度最小∵直线AB的解析式为x=0时,y=5,当y=0时,x=5B(0,5),A(5,0)AO=BO,△AOB是等腰直角三角形∴∠BAO=90°CNAB时,则△ACN是等腰直角三角形CN=ANCAC=7AC2=CN2+AN2=2CN2CN=CMN三点共线时,长度最小MN=CN-CM=-2故答案为:-2.【点睛】此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.2、【分析】如图连接并延长,过点交于点,由题意可知为等边三角形,,在;在计算求解即可.【详解】解:如图连接并延长,过点交于点 由题意可知为等边三角形  故答案为:【点睛】本题考查了旋转的性质,等边三角形,勾股定理,含的直角三角形等知识.解题的关键在于做辅助线构造直角三角形.3、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形ABCD′的位置,∴∠ADC=∠D=90°,∠DAD′=α∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.4、4【分析】在正方形ABCD中,BE′=DE=2,所以在直角三角形ECE中,EC=8,CE=4,利用勾股定理求得EE′的长即可.【详解】解:在正方形ABCD中,∠C=90°,由旋转得,BE′=DE=2,EC=8,CE=4,∴在直角三角形ECE中,EE′==4故答案为4【点睛】本题考查了正方形的性质、旋转的性质与勾股定理的知识,正确的利用旋转和正方形的性质得出直角三角形边长并正确的应用勾股定理是解题的关键.5、6【分析】依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;【详解】设直角三角形中能容纳最大圆的半径为:依据直角三角形的性质:可得斜边长为:依据直角三角形面积公式:,即为内切圆半径面积公式:,即为所以,可得:,所以直径为:故填:6;【点睛】本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;三、解答题1、(1)见解析(2)【分析】(1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CFAF可得∠OCF=90°,即可得出CF是⊙O的切线;(2)利用AAS可证明△AFC≌△AEC,可得SAFC=SAEC,根据垂径定理可得CE=DE,可得SBCD=2SBCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=AB=,进而可得AE=,根据三角形面积公式即可得答案.(1)(1)如图,连接OCOA=OC∴∠CAB=∠ACO∠FAC=∠BAC∴∠FAC=∠ACOAF//OC∴∠AFC+∠OCF=180°,CFAF∴∠OCF=90°,即OCCFCF是⊙O的切线.(2)在△AFC和△AEC中,∴△AFC≌△AECSAFC=SAECAB是⊙O的直径,CDABCE=DESBCD=2SBCE∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,∴∠BCE=∠CBA∵sin∠CAB=∴sin∠CAB=sin∠BCE=BE=AB=AE=====故答案为:【点睛】本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.2、(1)45°(2)【分析】(1)连接OC,根据切线的性质得到OCCD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;(2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.(1)连接,即 是⊙的切线,,即 (2)的长【点睛】本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.3、见解析【分析】先作线段的垂直平分线.确定的中点,再以中点为圆心,一半为半径作圆交点,然后作直线,则根据圆周角定理可得为所求.【详解】如图,直线AB就是所求作的,(作法不唯一,作出一条即可,需要有作图痕迹)【点睛】本题考查了作图复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.4、【分析】连接OA,根据⊙O的半径为10,OMMC=3:2可求出OM的长,由勾股定理求出AM的长,再由垂径定理求出AB的长即可.【详解】解:如图,连接OAOMMC=3:2,OC=10,OM=6.OCAB∴∠OMA=90°,AB=2AMRtAOM中,AO=10,OM=6,AM=8.AB=2AM =16.【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.5、(1)见解析;(2)6【分析】(1)连接OC,根据CE是⊙O的切线,可得∠OCE,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE,即可求证;(2)过点AAFECEC于点F,由∠AOCOAOC,可得∠OAC,从而得到∠BAD,再由ADEC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.【详解】证明:(1)连接OCCE是⊙O的切线,∴∠OCE∵∠ABC∴∠AOC=2∠ABC∵∠AOC+∠OCEADEC(2)解:过点AAFECEC于点F∵∠AOCOAOC∴∠OAC∵∠BAC∴∠BADADEC∵∠OCE,∠AOC,∠AFC=90°,∴四边形OAFC是矩形,OAOC∴四边形OAFC是正方形,RtAFE中,AE=2AF=6.【点睛】本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键. 

    相关试卷

    2021学年第24章 圆综合与测试同步练习题:

    这是一份2021学年第24章 圆综合与测试同步练习题,共30页。试卷主要包含了等边三角形等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共31页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试同步测试题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步测试题,共34页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map