![2022年强化训练沪科版九年级数学下册第24章圆定向测评试卷第1页](http://www.enxinlong.com/img-preview/2/3/12685538/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪科版九年级数学下册第24章圆定向测评试卷第2页](http://www.enxinlong.com/img-preview/2/3/12685538/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪科版九年级数学下册第24章圆定向测评试卷第3页](http://www.enxinlong.com/img-preview/2/3/12685538/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩28页未读,
继续阅读
2020-2021学年第24章 圆综合与测试一课一练
展开这是一份2020-2021学年第24章 圆综合与测试一课一练,共31页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )
A.①②③ B.①②④ C.①③④ D.②③④
2、下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
3、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
A.2个 B.3个 C.4个 D.5个
4、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是( )
A.80° B.70° C.60° D.50°
5、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )
A.3 B.4 C.5 D.6
6、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )
A.50° B.60° C.40° D.30°
7、下列语句判断正确的是( )
A.等边三角形是轴对称图形,但不是中心对称图形
B.等边三角形既是轴对称图形,又是中心对称图形
C.等边三角形是中心对称图形,但不是轴对称图形
D.等边三角形既不是轴对称图形,也不是中心对称图形
8、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )
A.1cm B.2cm C.3cm D.4cm
9、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
10、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为( )
A. B. C. D.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.
2、一块直角三角板的30°角的顶点A落在上,两边分别交于B、C两点,若弦BC长为4,则的半径为______.
3、如图,在中,,是内的一个动点,满足.若,,则长的最小值为_______.
4、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°
5、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知等边内接于⊙O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E.
(1)求证:CE是⊙O的切线;
(2)若AB的长为6,求CE的长.
2、下面是“过圆外一点作圆的切线”的尺规作图过程.
已知:⊙O和⊙O外一点P.
求作:过点P的⊙O的切线.作法:如图,
(1)连接OP;
(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;
(3)作直线MN,交OP于点C;
(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;
(5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线
完成如下证明:
证明:连接OA,OB,
∵OP是⊙C直径,点A在⊙C上
∴∠OAP=90°(___________)(填推理的依据).
∴OA⊥AP.
又∵点A在⊙O上,
∴直线PA是⊙O的切线(___________)(填推理的依据).
同理可证直线PB是⊙O的切线.
3、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上.记点D1的坐标是(m,n),C1的坐标是(p,q).
(1)设∠DAD1=30°,n=2,求证:OD1的长度;
(2)若∠DAD1<90°,m,n满足m+n=﹣4,p2+q2=25,求p+q的值.
4、综合与实践
“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;与垂直于点,足够长.
使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了.
为了说明这一方法的正确性,需要对其进行证明.
独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整.
已知:如图2,点,,,在同一直线上,,垂足为点,________,切半圆于.求证:________________.
探究解决:(2)请完成证明过程.
应用实践:(3)若半圆的直径为,,求的长度.
5、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OM、OP在直线AB上,其中.
(1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP在的内部且平分,此时三角板OPQ旋转的角度为______度;
(2)三角板OPQ在绕点O按逆时针方向旋转时,若OP在的内部.试探究与之间满足什么等量关系,并说明理由;
(3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OC、OD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OC与OD第二次相遇前,当时,直接写出旋转时间t的值.
-参考答案-
一、单选题
1、B
【分析】
根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
【详解】
解:∵,,点D、E分别是AB、AC的中点.
∴∠DAE=90°,AD=AE=,
∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC(SAS),
故①△AEC≌△ADB正确;
作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
∵△AEC≌△ADB,
∴∠DBA=∠ECA,
∴∠PBA+∠P=∠ECP+∠BAC,
∴∠P=∠BAC=90°,
∵CP为⊙A的切线,
∴AE⊥CP,
∴∠DPE=∠PEA=∠DAE=90°,
∴四边形DAEP为矩形,
∵AD=AE,
∴四边形DAEP为正方形,
∴PE=AE=3,
在Rt△AEC中,CE=,
∴CP最大=PE+EC=3+,
故②CP存在最大值为正确;
∵△AEC≌△ADB,
∴BD=CE=,
在Rt△BPC中,BP最小=,
BP最短=BD-PD=-3,
故③BP存在最小值为不正确;
取BC中点为O,连结AO,OP,
∵AB=AC=6,∠BAC=90°,
∴BP=CO=AO=,
当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
∴∠ACE=30°,
∴∠AOP=2∠ACE=60°,
当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
∴∠ABD=30°,
∴∠AOP′=2∠ABD=60°,
∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
∵∠POP=∠POA+∠AOP′=60°+60°=120°,
∴L.
故④点P运动的路径长为正确;
正确的是①②④.
故选B.
【点睛】
本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
2、B
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.
【详解】
A.不是中心对称图形,故本选项不符合题意;
B.是中心对称图形,故本选项符合题意;
C.不是中心对称图形,故本选项不符合题意;
D.不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、A
【分析】
根据轴对称图形与中心对称图形的概念进行判断.
【详解】
解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
共2个既是轴对称图形又是中心对称图形.
故选:A.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
4、A
【分析】
根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
【详解】
证明:∵绕点C逆时针旋转得到,
∴,,
∴∠ADC=∠DAC,
∵点A,D,E在同一条直线上,
∴,
∴∠DAC=50°,
∴∠BAD=∠BAC-∠DAC=80°
故选A.
【点睛】
本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
5、B
【分析】
由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
【详解】
∵PA,PB是⊙O的切线,A,B为切点,
∴,,
∴在和中,,
∴,
∴.
故选:B
【点睛】
本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
6、A
【分析】
根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.
【详解】
解: 将△OAB绕点O逆时针旋转80°得到△OCD,
∠A的度数为110°,∠D的度数为40°,
故选A
【点睛】
本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.
7、A
【分析】
根据等边三角形的对称性判断即可.
【详解】
∵等边三角形是轴对称图形,但不是中心对称图形,
∴B,C,D都不符合题意;
故选:A.
【点睛】
本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.
8、B
【分析】
连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.
【详解】
解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:
∵AB=8cm,
∴BD=AB=4(cm),
由题意得:OB=OC==5cm,
在Rt△OBD中,OD=(cm),
∴CD=OC-OD=5-3=2(cm),
即水的最大深度为2cm,
故选:B.
【点睛】
本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.
9、D
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
10、A
【分析】
过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.
【详解】
解:如图,过点作于点,连接,
AB是的直径,,,
,
在中,
故选A
【点睛】
本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.
二、填空题
1、60
【分析】
正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.
【详解】
360°÷6=60°
故答案为:60
【点睛】
本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.
2、4
【分析】
连接OB、OC,由题意易得∠BOC=60°,则有△BOC是等边三角形,然后问题可求解.
【详解】
连接OB、OC,如图所示:
∵∠A=30°,
∴∠BOC=60°,
∵OB=OC,
∴△BOC是等边三角形,
∵,
∴,即⊙O的半径为4.
故答案为:4.
【点睛】
本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.
3、2
【分析】
取AC中点O,由勾股定理的逆定理可知∠ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,由此求解即可.
【详解】
解:如图所示,取AC中点O,
∵,即,
∴∠ADC=90°,
∴点D在以O为圆心,以AC为直径的圆上,
作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,
∵,,∠ACB=90°,
∴,
∴,
∴,
∴,
故答案为:2.
【点睛】
本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹.
4、
【分析】
连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB
【详解】
解:连接,如图,
PA,PB分别与⊙O相切
故答案为:
【点睛】
本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.
5、45
【分析】
连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.
【详解】
解:连接OC,OD,
∵直径AB=30,
∴OC=OD=,
∴CD∥AB,
∴S△ACD=S△OCD,
∵长为6π,
∴阴影部分的面积为S阴影=S扇形OCD=,
故答案为:45π.
【点睛】
本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.
三、解答题
1、(1)见解析;(2)3
【分析】
(1)由题意连接OC,OB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;
(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.
【详解】
解:(1)证明:如图连接OC、OB.
∵是等边三角形
∴
∵
∴
又 ∵
∴
∴
∴
∴与⊙O相切;
(2)∵四边形ABCD是⊙O的内接四边形,
∴
∴
∵D为的中点,
∴
∴
∵
∴
∴
【点睛】
本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.
2、直径所对的圆周角是直角 经过半径的外端并且垂直于这条半径的直线是圆的切线
【分析】
连接OA,OB,根据圆周角定理可知∠OAP=90°,再依据切线的判定证明结论;
【详解】
证明:连接OA,OB,
∵OP是⊙C直径,点A在⊙C上,
∴∠OAP=90°(直径所对的圆周角是直角),
∴OA⊥AP.
又∵点A在⊙O上,
∴直线PA是⊙O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),
同理可证直线PB是⊙O的切线,
故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.
3、(1)4;(2)-1或-7
【分析】
(1)如图,且三点在一条直线上的情况,连接,过点向作垂线交点为,在直角三角形中,,,可求的长;
(2)如图,过点向作垂线交点为,过点作轴垂线交于点,作交点为;由,知,,点G坐标为,得,由知的值,从而得到的值.
【详解】
解:(1)∵∠DAD1=30°且D1、C1、O三点在一条直线上
∴如图所示,连接,过点向作垂线交点为
∴
∵
.
(2)如图过点向作垂线交点为,过点作轴垂线交于点,作交点为
,
在和中
点横坐标可表示为
∴p+q=-7或-1.
【点睛】
本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系.
4、(1),,将三等分;(2)见解析;(3)
【分析】
(1)根据题意即可得;
(2)先证明与全等,然后根据全等的性质可得,再由圆的切线的性质可得,可得三个角相等,即可证明结论;
(3)连,延长与相交于点,由(2)结论可得,再由切线的性质,,然后利用勾股定理及线段间的数量关系可得,最后利用相似三角形的判定和性质求解即可得.
【详解】
解:(1),,将三等分,
故答案为:;,将三等分,
(2)证明:在与中,
,
,
.
,
是的切线.
、都是的切线,
,
,
,将三等分.
(3)如图,连,延长与相交于点,
由(2),知.
是的切线,
,
,.
∵半径,
∴由勾股定理得,在中,
,,
.
∵,
,
,
,即,
.
【点睛】
题目主要考查全等三角形的判定和性质,相似三角形的判定和性质,圆的切线的性质,勾股定理等,理解题意,结合图形综合运用这些知识点是解题关键.
5、
(1)135°
(2)∠MOP-∠NOQ=30°,理由见解析
(3)s或s.
【分析】
(1)先根据OP平分得到∠PON,然后求出∠BOP即可;
(2)先根据题意可得∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,然后作差即可;
(3)先求出旋转前OC、OD的夹角,然后再求出OC与OD第一次和第二次相遇所需要的时间,再设在OC与OD第二次相遇前,当时,需要旋转时间为t,再分OE在OC的左侧和OE在OC的右侧两种情况解答即可.
(1)
解:∵OP平分∠MON
∴∠PON=∠MON=45°
∴三角板OPQ旋转的角:∠BOP=∠PON+∠NOB=135°.
故答案是135°
(2)
解:∠MOP-∠NOQ=30°,理由如下:
∵∠MON=90°,∠POQ=60°
∴∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,
∴∠MOP-∠NOQ=90°-∠POQ -(60°-∠POQ)=30°.
(3)
解:∵射线OC平分,射线OD平分
∴∠NOC=45°,∠POD=30°
∴选择前OC与OD的夹角为∠COD=∠NOC+∠NOP+∠POD=165°
∴OC与OD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°
∴此时OC与OE的夹角165-(180-45-2×33)=96°
OC与OD第二次相遇需要时间360°÷(3°+2°)=72秒
设在OC与OD第二次相遇前,当时,需要旋转时间为t
①当OE在OC的左侧时,有(5°-2°)t=96°-13°,解得:t=s
②当OE在OC的右侧时,有(5°-2°)t=96°+13°,解得:t=s
然后,①②都是每隔360÷(5°-2°)=120秒,出现一次这种现象
∵C、D第二次相遇需要时间72秒
∴在OC与OD第二次相遇前,当时,、旋转时间t的值为s或s.
【点睛】
本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键.
相关试卷
初中数学第24章 圆综合与测试练习:
这是一份初中数学第24章 圆综合与测试练习,共26页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
2020-2021学年第24章 圆综合与测试课时作业:
这是一份2020-2021学年第24章 圆综合与测试课时作业,共36页。试卷主要包含了如图,一个宽为2厘米的刻度尺,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题:
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共29页。