终身会员
搜索
    上传资料 赚现金

    2022年强化训练沪科版九年级数学下册第24章圆定向练习练习题(精选含解析)

    立即下载
    加入资料篮
    2022年强化训练沪科版九年级数学下册第24章圆定向练习练习题(精选含解析)第1页
    2022年强化训练沪科版九年级数学下册第24章圆定向练习练习题(精选含解析)第2页
    2022年强化训练沪科版九年级数学下册第24章圆定向练习练习题(精选含解析)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版第24章 圆综合与测试课时练习

    展开

    这是一份沪科版第24章 圆综合与测试课时练习,共31页。


    沪科版九年级数学下册第24章圆定向练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,AB的直径,弦CDAB于点P,则CD的长为(   

    A. B. C. D.8

    2、下列说法正确的个数有(   

    ①方程的两个实数根的和等于1;

    ②半圆是弧;

    ③正八边形是中心对称图形;

    ④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;

    ⑤如果反比例函数的图象经过点,则这个函数图象位于第二、四象限.

    A.2个 B.3个 C.4个 D.5个

    3、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是(   

    A.  B. 

    C.  D.

    4、如图,ABC是正方形网格中的三个格点,则是(   

    A.优弧 B.劣弧 C.半圆 D.无法判断

    5、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为(   

    A.1cm B.2cm C.3cm D.4cm

    6、下列图形中,既是轴对称图形又是中心对称图形的是(      

    A. B. C. D.

    7、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(    ).

    A.20° B.25° C.30° D.40°

    8、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是(   

    A. B. C. D.

    9、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为(   

    A.30° B.60°

    C.90° D.120°

    10、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________

    2、已知正多边形的半径与边长相等,那么正多边形的边数是______.

    3、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________

    4、如图,AB是半圆O的直径,点D在半圆O上,C是弧BD上的一个动点,连接AC,过D点作H.连接BH,则在点C移动的过程中,线段BH的最小值是______.

    5、如图,在⊙O中,ABC是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,在RtABC中,∠B=90°,∠BAC的平分线ADBC于点D,点EAC上,以AE为直径的⊙O经过点D

    (1)求证:

    BC是⊙O的切线;

    (2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.

    2、阅读下列材料,完成相应任务:如图①,是⊙O的内接三角形,是⊙O的直径,平分交⊙O于点,连接,过点作⊙O的切线,交的延长线于点.则.下面是证明的部分过程:

    证明:如图②,连接

    是⊙O的直径,

    ①________.(1)

    为⊙O的切线,

    ,(2)

    由(1)(2)得,②________________.

    平分

    ③________,

    任务:

    (1)请按照上面的证明思路,补全证明过程:①________,②________,③________;

    (2)若,求的长.

    3、如图,在中,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BEFE,连接FC并延长交BE于点G

    (1)依题意补全图形;

    (2)求的度数;

    (3)连接GA,用等式表示线段GAGBGC之间的数量关系,并证明.

    4、如图,已知的直径,的切线,C为切点,于点E平分

    (1)求证:

    (2)求的长.

    5、在等边中,将线段AB绕点A顺时针旋转得到线段AD

    (1)若线段DA的延长线与线段BC相交于点E(不与点BC重合),写出满足条件的α的取值范围;

    (2)在(1)的条件下连接BD,交CA的延长线于点F

    ①依题意补全图形;②用等式表示线段AEAFCE之间的数量关系,并证明.

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.

    【详解】

    解:如图,过点于点,连接

    AB的直径,

    中,

    故选A

    【点睛】

    本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.

    2、B

    【分析】

    根据所学知识对五个命题进行判断即可.

    【详解】

    1、,故方程无实数根,故本命题错误;

    2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;

    3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;

    4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;

    5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误

    综上所述,正确个数为3

    故选B

    【点睛】

    本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键.

    3、C

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    A.是轴对称图形,不是中心对称图形,故此选项不合题意;

    B.不是轴对称图形,是中心对称图形,故此选项不符合题意;

    C.是轴对称图形,也是中心对称图形,故此选项合题意;

    D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.

    故选:C.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    4、B

    【分析】

    根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.

    【详解】

    解;如图,分别连接ABACBC,取任意两条线段的中垂线相交,交点就是圆心.

    故选:B.

    【点睛】

    本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.

    5、B

    【分析】

    连接OB,过点OOCAB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.

    【详解】

    解:连接OB,过点OOCAB于点D,交⊙O于点C,如图所示:

    AB=8cm,

    BD=AB=4(cm),

    由题意得:OB=OC==5cm,

    RtOBD中,OD=(cm),

    CD=OC-OD=5-3=2(cm),

    即水的最大深度为2cm,

    故选:B.

    【点睛】

    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.

    6、D

    【详解】

    解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;

    .不是轴对称图形,是中心对称图形,故本选项不符合题意;

    .是轴对称图形,不是中心对称图形,故本选项不符合题意;

    .既是轴对称图形,又是中心对称图形,故本选项符合题意.

    故选:D.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    7、B

    【分析】

    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.

    【详解】

    解:连接OA,如图,

    PA是⊙O的切线,

    OAAP

    ∴∠PAO=90°,

    ∵∠P=40°,

    ∴∠AOP=50°,

    OA=OB

    ∴∠B=∠OAB

    ∵∠AOP=∠B+∠OAB

    ∴∠B=∠AOP=×50°=25°.

    故选:B

    【点睛】

    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.

    8、C

    【分析】

    如图,过点CCTAB于点T,过点OOHAB于点H,交⊙O于点K,连接AOAK,解直角三角形求出AB,求出CT的最大值,可得结论.

    【详解】

    解:如图,过点CCTAB 于点T,过点OOHAB于点H,交⊙O于点K,连接AOAK

    由题意可得AB垂直平分线段OK

    AO=AKOH=HK=3,

    OA=OK

    OA=OK=AK

    ∴∠OAK=∠AOK=60°,

    AH=OA×sin60°=6×=3

    OHAB

    AH=BH

    AB=2AH=6

    OC+OHCT

    CT⩽6+3=9,

    CT的最大值为9,

    ∴△ABC的面积的最大值为=27

    故选:C.

    【点睛】

    本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.

    9、B

    【分析】

    由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.

    【详解】

    解:因为每次旋转相同角度,旋转了六次,

    且旋转了六次刚好旋转了一周为360°,

    所以每次旋转相同角度 .

    故选:B.

    【点睛】

    本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.

    10、D

    【分析】

    连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.

    【详解】

    解:连接OFOEOG

    AB、BC、CD分别与相切,

    ,且

    OB平分OC平分

    故选:D.

    【点睛】

    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.

    二、填空题

    1、

    【分析】

    连接OCAB于点D,再连接OA.根据轴对称的性质确定OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.

    【详解】

    解:如下图所示,连接OCAB于点D,再连接OA

    ∵折叠后弧的中点与圆心重叠,

    OD=CD

    AD=BD

    ∵圆形纸片的半径为10cm,

    OA=OC=10cm.

    OD=5cm.

    cm.

    BD=cm.

    cm.

    故答案为:

    【点睛】

    本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.

    2、六

    【分析】

    设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.

    【详解】

    解:设这个正多边形的边数为n

    ∵正多边形的半径与边长相等,

    OA=OB=AB

    ∴△OAB是等边三角形,

    ∴∠AOB=60°,

    ∴正多边形的边数是六,

    故答案为:六.

    【点睛】

    本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.

    3、    4   

    【分析】

    设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.

    【详解】

    解:设一直角边长为x,另一直角边长为(6-x),

    ∵三角形是直角三角形,

    ∴根据勾股定理

    整理得:

    解得

    这个直角三角形的斜边长为外接圆的直径,

    ∴外接圆的半径为cm,

    三角形面积为

    故答案为

    【点睛】

    本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.

    4、##

    【分析】

    连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当三点共线时,最小;求出,在中,,所以,即为所求.

    【详解】

    解:连接,取的中点,连接

    点在以为圆心,为半径的圆上,

    三点共线时,最小,

    是直径,

    中,

    故答案为:

    【点睛】

    本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.

    5、35°

    【分析】

    利用圆周角定理求出所求角度数即可.

    【详解】

    解:都对,且

    故答案为:

    【点睛】

    本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.

    三、解答题

    1、(1)①见解析;②见解析;(2)

    【分析】

    (1)①连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;

    ②连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;

    (2)证明是等边三角形,四边形DOAF是菱形,,结合扇形面积公式解题.

    【详解】

    解:(1)①连接OD

    是∠BAC的平分线

    是⊙O的切线;

    ②连接DE

    是⊙O的切线,

    是直径

    (2)连接DEODDFOF,

    设圆的半径为R

    F是劣弧AD的中点,

    OFDA中垂线

    DF=AF

    是等边三角形,四边形DOAF是菱形,

    【点睛】

    本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键.

    2、(1);(2)

    【分析】

    (1)由是⊙O的直径,得到ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明

    (2)在直角△ODE中利用勾股定理求解即可.

    【详解】

    解:(1)如图②,连接

    是⊙O的直径,

    ODB.(1)

    为⊙O的切线,

    ,(2)

    由(1)(2)得,∠ODA=∠BDE

    平分

    ODA

    故答案为:① ,② ,③

    (2)的切线,

    中,

    【点睛】

    本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.

    3、

    (1)见解析;

    (2)

    (3)

    【分析】

    (1)根据题意补全图形即可;

    (2)根据旋转的性质可得,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明

    (3)过点,证明,进而根据勾股定理以及线段的转换即可得到

    (1)

    如图,

    (2)

    将线段AE绕点A逆时针旋转90°,得到线段AF

    ,

    ,

    (3)

    证明如下,如图,过点

    ,

    【点睛】

    本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.

    4、(1)90°;(2)AC=DE=1

    【分析】

    (1)如图,可知

    (2)可求出的长;可求出的长.

    【详解】

    解(1)证明如图所示,连接

    是直径,的切线,平分

    (2)解∵

    【点睛】

    本题考查了角平分线、勾股定理、等腰三角形的性质、三角形相似的判定等知识点.解题的关键在于判定三角形相似.

    5、(1);(2)①见解析;②AE=AF+CE,证明见解析.

    【分析】

    (1)根据“线段DA的延长线与线段BC相交于点E”可求解;

    (2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.

    【详解】

    (1)如图:AD只能在锐角∠EAF内旋转符合题意

    α的取值范围为:

    (2)补全图形如下:

    (3)AE=AF+CE

    证明:在AE上截取AH=AF,由旋转可得:AB=AD

    ∴∠D=∠ABF

    ∵△ABC为等边三角形,

    AB=AC,∠BAC=ACB=60°,

    AD=AC

    ∵∠DAF=∠CAH

    ∴△AFD≌△AHC

    ∴∠AFD=∠AHC,∠D=∠ACH

    ∴∠AFB=∠CHE

    ∵∠AFB+∠ABF=∠ACH+∠HCE=60°,

    ∴∠CHE+∠D=∠D+∠HCE=60°,

    ∴∠CHE=∠HCE

    CE=HE

    AE=AH+HE=AF+CE

    【点睛】

    本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.

     

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共25页。

    初中数学沪科版九年级下册第24章 圆综合与测试课后复习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后复习题,共36页。

    沪科版九年级下册第24章 圆综合与测试巩固练习:

    这是一份沪科版九年级下册第24章 圆综合与测试巩固练习,共28页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map