年终活动
搜索
    上传资料 赚现金

    2022年强化训练沪科版九年级数学下册第24章圆单元测试试题(含详细解析)

    2022年强化训练沪科版九年级数学下册第24章圆单元测试试题(含详细解析)第1页
    2022年强化训练沪科版九年级数学下册第24章圆单元测试试题(含详细解析)第2页
    2022年强化训练沪科版九年级数学下册第24章圆单元测试试题(含详细解析)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试单元测试课后复习题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试单元测试课后复习题,共36页。试卷主要包含了在圆内接四边形ABCD中,∠A,等边三角形等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆单元测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是(  )

    A..等腰三角形 B.等边三角形
    C..直角三角形 D..等腰直角三角形
    2、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )

    A.3 B.4 C.5 D.6
    3、在半径为6cm的圆中,的圆心角所对弧的弧长是( )
    A.cm B.cm C.cm D.cm
    4、下列各点中,关于原点对称的两个点是(  )
    A.(﹣5,0)与(0,5) B.(0,2)与(2,0)
    C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)
    5、下列图形中,是中心对称图形,但不是轴对称图形的是( )
    A. B. C. D.
    6、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )
    A. B.
    C. D.
    7、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )
    A.140° B.100° C.80° D.40°
    8、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
    A.2个 B.3个 C.4个 D.5个
    9、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )

    A.1 B.2 C.3 D.4
    10、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )

    A.①②③ B.①②④ C.①③④ D.②③④
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.

    2、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
    ①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.

    3、在平面直角坐标系中,A(-1,0),B(2,0),∠OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则△AOE面积的最大值为___________

    4、如图,在中,,是内的一个动点,满足.若,,则长的最小值为_______.

    5、如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_______.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,已知线段,点A在线段上,且,点B为线段上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为和.若旋转后M、N两点重合成一点C(即构成),设.

    (1)的周长为_______;
    (2)若,求x的值.
    2、在中,,,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.

    (1)如图,当点E在线段CD上时,
    ①依题意补全图形,并直接写出BC与CF的位置关系;
    ②求证:点G为BF的中点.
    (2)直接写出AE,BE,AG之间的数量关系.
    3、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).

    (1)直接写出点B关于原点对称的点B′的坐标:  ;
    (2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
    (3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
    4、如图,是⊙的直径,弦,垂足为E,弦与弦相交于点G,且,过点C作的垂线交的延长线于点H.

    (1)判断与⊙的位置关系并说明理由;
    (2)若,求弧的长.
    5、如图1,BC是⊙O的直径,点A,P在⊙O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQ⊥AP,交PC 的延长线于点Q,AQ交⊙O于点D,已知AB=3,AC=4.

    (1)求证:△APQ∽△ABC.
    (2)如图2,当点C为的中点时,求AP的长.
    (3)连结AO,OD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.

    -参考答案-
    一、单选题
    1、D
    【分析】
    根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.
    【详解】
    解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,
    ∴∠ECF=90°,CE=CF,
    ∴△CEF是等腰直角三角形,
    故选:D.
    【点睛】
    本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.
    2、A
    【分析】
    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
    【详解】
    由旋转的性质得:,

    是等边三角形,



    故选:A.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
    3、C
    【分析】
    直接根据题意及弧长公式可直接进行求解.
    【详解】
    解:由题意得:的圆心角所对弧的弧长是;
    故选C.
    【点睛】
    本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.
    4、D
    【分析】
    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
    【详解】
    解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;
    B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;
    C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;
    D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;
    故选:D.
    【点睛】
    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    5、B
    【分析】
    根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
    【详解】
    解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
    B、是中心对称图形但不是轴对称图形,故符合题意;
    C、既不是轴对称图形也不是中心对称图形,故不符合题意;
    D、是轴对称图形但不是中心对称图形,故不符合题意;
    故选B.
    【点睛】
    本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
    6、C
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A.是轴对称图形,不是中心对称图形,故此选项不合题意;
    B.不是轴对称图形,是中心对称图形,故此选项不符合题意;
    C.是轴对称图形,也是中心对称图形,故此选项合题意;
    D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    7、C
    【分析】
    ,,,进而求解的值.
    【详解】
    解:由题意知





    故选C.
    【点睛】
    本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.
    8、A
    【分析】
    根据轴对称图形与中心对称图形的概念进行判断.
    【详解】
    解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
    等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
    共2个既是轴对称图形又是中心对称图形.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    9、B
    【分析】
    由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.
    【详解】
    由题意以及旋转的性质知AD=AB,∠BAD=60°
    ∴∠ADB=∠ABD
    ∵∠ADB+∠ABD+∠BAD=180°
    ∴∠ADB=∠ABD=60°
    故为等边三角形,即AB= AD =BD=2
    则CD=BC-BD=4-2=2
    故选:B.
    【点睛】
    本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.
    10、B
    【分析】
    根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
    【详解】
    解:∵,,点D、E分别是AB、AC的中点.
    ∴∠DAE=90°,AD=AE=,
    ∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
    ∴∠DAB=∠EAC,
    在△DAB和△EAC中,

    ∴△DAB≌△EAC(SAS),
    故①△AEC≌△ADB正确;

    作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
    ∵△AEC≌△ADB,
    ∴∠DBA=∠ECA,
    ∴∠PBA+∠P=∠ECP+∠BAC,
    ∴∠P=∠BAC=90°,
    ∵CP为⊙A的切线,
    ∴AE⊥CP,
    ∴∠DPE=∠PEA=∠DAE=90°,
    ∴四边形DAEP为矩形,
    ∵AD=AE,
    ∴四边形DAEP为正方形,
    ∴PE=AE=3,
    在Rt△AEC中,CE=,
    ∴CP最大=PE+EC=3+,
    故②CP存在最大值为正确;

    ∵△AEC≌△ADB,
    ∴BD=CE=,
    在Rt△BPC中,BP最小=,
    BP最短=BD-PD=-3,
    故③BP存在最小值为不正确;
    取BC中点为O,连结AO,OP,
    ∵AB=AC=6,∠BAC=90°,
    ∴BP=CO=AO=,
    当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
    ∴∠ACE=30°,
    ∴∠AOP=2∠ACE=60°,
    当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
    ∴∠ABD=30°,
    ∴∠AOP′=2∠ABD=60°,
    ∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
    ∵∠POP=∠POA+∠AOP′=60°+60°=120°,
    ∴L.
    故④点P运动的路径长为正确;
    正确的是①②④.
    故选B.

    【点睛】
    本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
    二、填空题
    1、或
    【分析】
    如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.
    【详解】
    解:如图,连接 (即)分别在优弧与劣弧上,

    PM,PN分别与⊙O相切于A,B两点,




    故答案为:或
    【点睛】
    本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.
    2、①②④
    【分析】
    连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.
    【详解】
    解:连接OM,

    ∵PE为的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,,
    ∴,
    即AM平分,故①正确;
    ∵AB为的直径,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,故②正确;
    ∵,
    ∴,
    ∵,
    ∴,
    ∴的长为,故③错误;
    ∵,,,
    ∴,
    ∴,
    ∴,
    ∴,
    又∵,,,
    ∴,
    又∵,
    ∴,
    设,则,
    ∴,
    在中,,
    ∴,
    ∴,
    由①可得,

    故④正确,
    故答案为:①②④.
    【点睛】
    本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    3、
    【分析】
    过点作轴,交于点,根据中位线定理可得,设点到轴的距离为G,则△AOE的边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.
    【详解】
    解:过点作轴,交于点,

    ∵A(-1,0),B(2,0),
    ∴,,
    ∵D为线段BC的中点,轴,
    ∴,
    ∴,
    设点到轴的距离为,
    则△AOE的边上的高,
    作的外接圆,
    则当点位于图中处时,最大,
    因为,
    ∴,
    ∴为等边三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.
    4、2
    【分析】
    取AC中点O,由勾股定理的逆定理可知∠ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,由此求解即可.
    【详解】
    解:如图所示,取AC中点O,
    ∵,即,
    ∴∠ADC=90°,
    ∴点D在以O为圆心,以AC为直径的圆上,
    作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,
    ∵,,∠ACB=90°,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:2.

    【点睛】
    本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹.
    5、##
    【分析】
    先求出点A、B的坐标,过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案.
    【详解】
    解:∵一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B两点,
    ∴令,则;令,则,
    ∴点A为(2,0),点B为(0,4),
    ∴,;
    过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,如图,

    ∴,
    ∴,
    ∴,
    ∵,
    ∴△ABF是等腰直角三角形,
    ∴AF=AB,
    ∴△ABO≌△FAE(AAS),
    ∴AO=FE,BO=AE,
    ∴,,
    ∴,
    ∴点F的坐标为(,);
    设直线BC为,则
    ,解得:,
    ∴直线BC的函数表达式为;
    故答案为:;
    【点睛】
    本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.
    三、解答题
    1、
    (1)4
    (2)
    【分析】
    (1)由旋转知:AM=AC=1,BN=BC,将△ABC的周长转化为MN;
    (2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.
    (1)
    解:由旋转知:AM=AC=1,BN=BC=3-x,
    ∴△ABC的周长为:AC+AB+BC=MN=4;
    故答案为:4;
    (2)
    解:∵α+β=270°,
    ∴∠CAB+∠CBA=360°-270°=90°,
    ∴∠ACB=180°-(∠CAB+∠CBA)
    =180°-90°
    =90°,
    ∴AC2+BC2=AB2,
    即12+(3-x)2=x2,
    解得.
    【点睛】
    本题主要考查了旋转的性质,勾股定理等知识,证明∠ACB=90°是解题的关键.
    2、(1)①BC⊥CF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.
    【分析】
    (1)①如图所示,BC⊥CF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;
    ②根据AD⊥BC,BC⊥CF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;
    (2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.
    【详解】
    解:(1)①如图所示,BC⊥CF.
    ∵将线段AE逆时针旋转90°得到线段AF,
    ∴AE=AF,∠EAF=90°,
    ∴∠EAC+∠CAF=90°,
    ∵,,
    ∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,
    ∴∠BAE=∠CAF,
    在△BAE和△CAF中,

    ∴△BAE≌△CAF(SAS),
    ∴∠ABE=∠ACF=45°,
    ∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
    ∴BC⊥CF;

    ②∵AD⊥BC,BC⊥CF.
    ∴AD∥CF,
    ∴∠BDG=∠BCF=90°,∠BGD=∠BFC,
    ∴△BDG∽△BCF,
    ∴,
    ∵,AD⊥BC,
    ∴BD=DC=,
    ∴,
    ∴,
    ∴,
    ∴BG=GF;
    (2)2AE2=4AG2+BE2.延长BA交CF延长线于H,
    ∵AD⊥BC,AB=AC,
    ∴AD平分∠BAC,
    ∴∠BAD=∠CAD=,
    ∵BG=GF,AG∥HF,
    ∴∠BAG=∠H=45°,∠AGB=∠HFB,
    ∴△BAG∽△BHF,
    ∴,
    ∴HF=2AG,
    ∵∠ACE=45°,
    ∴∠ACE =∠H,
    ∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,
    ∴∠EAC=∠FAH,
    在△AEC和△AFH中,

    ∴△AEC≌△AFH(AAS),
    ∴EC=FH=2AG,
    在Rt△AEF中,根据勾股定理,
    在Rt△ECF中,即.

    【点睛】
    本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.
    3、(1)(4,﹣1);(2)见解析;(3)见解析.
    【分析】
    (1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;
    (2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;
    (3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.
    【详解】
    (1)点B关于原点对称的点B′的坐标为(4,﹣1),
    故答案为:(4,﹣1);
    (2)如图所示,△A1B1C1即为所求.

    (3)如图所示,△A2B2C2即为所求.
    【点睛】
    本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.
    4、
    (1)相切,见解析
    (2)
    【分析】
    (1)连接OC、OD、AC,OC交AF于点M,根据AG=CG,CD⊥AB,可得,从而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求证;
    (2)先证明四边形CMFH为矩形,可得OC⊥AF,CM=HF=2,从而得到AM=FM,进而得到OM=BF=2,可得到CM=OM,进而得到 OC=4,AM垂直平分OC,可证得△AOC为等边三角形,即可求解.
    (1)
    解: CH与⊙O相切.
    理由如下:如图,连接OC、OD、AC,OC交AF于点M,

    ∵AG=CG,
    ∴∠ACG=∠CAG,
    ∴,
    ∵CD⊥AB,
    ∴,
    ∴,
    ∴OC⊥AF,
    ∵AB为直径,
    ∴∠AFB=90°,
    ∵BH⊥CH,
    ∴CH∥AF,
    ∴OC⊥CH,
    ∵OC为半径,
    ∴CH为⊙O的切线;
    (2)
    解:由(1)得:BH⊥CH,OC⊥CH,
    ∴OC∥BH,
    ∵CH∥AF,
    ∴四边形CMFH为平行四边形,
    ∵OC⊥CH,
    ∴∠OCH=90°,
    ∴四边形CMFH为矩形,
    ∴OC⊥AF,CM=HF=2,
    ∴AM=FM,
    ∵点O为AB的中点,
    ∴OM=BF=2,
    ∴CM=OM,
    ∴OC=4,AM垂直平分OC,
    ∴AC=AO,
    而AO=OC,
    ∴AC=OC=OA,,
    ∴△AOC为等边三角形,
    ∴∠AOC=60°,
    ∵,
    ∴∠AOD=∠AOC=60°,
    ∴∠COD=120°,
    ∴弧CD的长度为.
    【点睛】
    本题主要考查了圆的基本性质,垂径定理,切线的判定,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键.
    5、(1)见解析;(2)(3)当,时,;当时,.
    【分析】
    (1)通过证,,即可得;
    (2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP.
    (3)分类讨论, ,,,三种情况讨论,再通过勾股定理和相似即可求解.
    【详解】
    证明:(1)∵AQ⊥AP

    ∵BC是⊙O的直径




    (2)如图,连接CD,PD

    ∵BC是⊙O的直径

    ∵AB=3,AC=4
    ∴利用勾股定理得:,即直径为5


    ∴DP是⊙O的直径,且DP=BC=5
    ∵点C为的中点
    ∴CD=PC


    ∴是等腰直角三角形
    ∴利用勾股定理得:,则
    ∵,



    ∴,即:



    ∴,即:

    (3)连接AO,OD,OP,CD,OD交AC于点M

    ∵(已证)
    ∴OD,OP共线,为⊙O的直径
    情况一:当时
    ∵,

    ∴AP=PC



    ∴即
    ∵AP=PC

    ∴在中,

    ∴在中,
    情况二:当时,



    同情况一:
    情况三:当时
    ∵,

    ∴,
    ∵OA=OD



    综上所述,当,时,;当时,.
    【点睛】
    本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.

    相关试卷

    沪科版第24章 圆综合与测试课时练习:

    这是一份沪科版第24章 圆综合与测试课时练习,共27页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试课后复习题:

    这是一份数学九年级下册第24章 圆综合与测试课后复习题,共32页。

    初中第24章 圆综合与测试巩固练习:

    这是一份初中第24章 圆综合与测试巩固练习,共28页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map