终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练沪科版九年级数学下册第24章圆专题攻克练习题(无超纲)

    立即下载
    加入资料篮
    2022年强化训练沪科版九年级数学下册第24章圆专题攻克练习题(无超纲)第1页
    2022年强化训练沪科版九年级数学下册第24章圆专题攻克练习题(无超纲)第2页
    2022年强化训练沪科版九年级数学下册第24章圆专题攻克练习题(无超纲)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试达标测试

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共36页。
    沪科版九年级数学下册第24章圆专题攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).

    A.20° B.25° C.30° D.40°
    2、下列叙述正确的有( )个.
    (1)随着的增大而增大;
    (2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;
    (3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;
    (4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;
    (5)以为三边长度的三角形,不是直角三角形.
    A.0 B.1 C.2 D.3
    3、如图,四边形内接于,如果它的一个外角,那么的度数为( )

    A. B. C. D.
    4、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )

    A.1cm B.2cm C.3cm D.4cm
    5、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )

    A.①②③ B.①②④ C.①③④ D.②③④
    6、如图,AB是⊙O的直径,弦,,,则阴影部分图形的面积为( )

    A. B. C. D.
    7、如图,,,,都是上的点,,垂足为,若,则的度数为( )

    A. B. C. D.
    8、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    9、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )
    A.它们的开口方向相同 B.它们的对称轴相同
    C.它们的变化情況相同 D.它们的顶点坐标相同
    10、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是(  )

    A..等腰三角形 B.等边三角形
    C..直角三角形 D..等腰直角三角形
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,以面积为20cm2的Rt△ABC的斜边AB为直径作⊙O,∠ACB的平分线交⊙O于点D,若,则AC+BC=_____.

    2、在△ABC中,AB = AC,以AB为直径的圆O交BC边于点D.要使得圆O与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD > AB;④AB < DE < AB.
    3、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.

    4、已知O、I分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.
    5、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,是的直径,四边形内接于,是的中点,交的延长线于点.

    (1)求证:是的切线;
    (2)若,,求的长.
    2、如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.

    (1)求∠ABD的度数;
    (2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;
    (3)在(2)的条件下,求的长.
    3、如图,,是的两条切线,切点分别为,,连接并延长交于点,过点作的切线交的延长线于点,于点.

    (1)求证:四边形是矩形;
    (2)若,,求的长..
    4、在平面直角坐标系xOy中,旋转角满足,对图形M与图形N给出如下定义:将图形M绕原点逆时针旋转得到图形.P为图形上任意一点,Q为图形N上的任意一点,称PQ长度的最小值为图形M与图形N的“转后距”.已知点,点,点.
    (1)当时,记线段OA为图形M.
    ①画出图形;
    ②若点C为图形N,则“转后距”为______;
    ③若线段AC为图形N,求“转后距”;

    (2)已知点,点,记线段AB为图形M,线段PQ为图形N,对任意旋转角,“转后距”大于1,直接写出t的取值范围.
    5、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.
    已知:⊙O.
    求作:⊙O的内接等腰直角三角形ABC.

    作法:如图,

    ①作直径AB;
    ②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;
    ③作直线MO交⊙O于点C,D;
    ④连接AC,BC.
    所以△ABC就是所求的等腰直角三角形.
    根据小明设计的尺规作图过程,解决下面的问题:
    (1)使用直尺和圆规,补全图形;(保留作图痕迹)
    (2)完成下面的证明.
    证明:连接MA,MB.
    ∵MA=MB,OA=OB,
    ∴MO是AB的垂直平分线.
    ∴AC= .
    ∵AB是直径,
    ∴∠ACB= ( ) (填写推理依据) .
    ∴△ABC是等腰直角三角形.

    -参考答案-
    一、单选题
    1、B
    【分析】
    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
    【详解】
    解:连接OA,如图,

    ∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴∠PAO=90°,
    ∵∠P=40°,
    ∴∠AOP=50°,
    ∵OA=OB,
    ∴∠B=∠OAB,
    ∵∠AOP=∠B+∠OAB,
    ∴∠B=∠AOP=×50°=25°.
    故选:B.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    2、D
    【分析】
    根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.
    【详解】
    当或者时,随着的增大而增大,故(1)不正确;
    如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;
    ∵圆的直径所对的圆周角为直角
    ∴斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;
    三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;


    ∴以为三边长度的三角形,是直角三角形,故(5)错误;
    故选:D.
    【点睛】
    本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.
    3、D
    【分析】
    由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.
    【详解】


    ∵四边形内接于

    又∵
    ∴.
    故选:D.
    【点睛】
    本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.
    4、B
    【分析】
    连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.
    【详解】
    解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:

    ∵AB=8cm,
    ∴BD=AB=4(cm),
    由题意得:OB=OC==5cm,
    在Rt△OBD中,OD=(cm),
    ∴CD=OC-OD=5-3=2(cm),
    即水的最大深度为2cm,
    故选:B.
    【点睛】
    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    5、B
    【分析】
    根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
    【详解】
    解:∵,,点D、E分别是AB、AC的中点.
    ∴∠DAE=90°,AD=AE=,
    ∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
    ∴∠DAB=∠EAC,
    在△DAB和△EAC中,

    ∴△DAB≌△EAC(SAS),
    故①△AEC≌△ADB正确;

    作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
    ∵△AEC≌△ADB,
    ∴∠DBA=∠ECA,
    ∴∠PBA+∠P=∠ECP+∠BAC,
    ∴∠P=∠BAC=90°,
    ∵CP为⊙A的切线,
    ∴AE⊥CP,
    ∴∠DPE=∠PEA=∠DAE=90°,
    ∴四边形DAEP为矩形,
    ∵AD=AE,
    ∴四边形DAEP为正方形,
    ∴PE=AE=3,
    在Rt△AEC中,CE=,
    ∴CP最大=PE+EC=3+,
    故②CP存在最大值为正确;

    ∵△AEC≌△ADB,
    ∴BD=CE=,
    在Rt△BPC中,BP最小=,
    BP最短=BD-PD=-3,
    故③BP存在最小值为不正确;
    取BC中点为O,连结AO,OP,
    ∵AB=AC=6,∠BAC=90°,
    ∴BP=CO=AO=,
    当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
    ∴∠ACE=30°,
    ∴∠AOP=2∠ACE=60°,
    当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
    ∴∠ABD=30°,
    ∴∠AOP′=2∠ABD=60°,
    ∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
    ∵∠POP=∠POA+∠AOP′=60°+60°=120°,
    ∴L.
    故④点P运动的路径长为正确;
    正确的是①②④.
    故选B.

    【点睛】
    本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
    6、D
    【分析】
    根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.
    【详解】
    解:设AB与CD交于点E,
    ∵AB是⊙O的直径,弦CD⊥AB,CD=2,如图,

    ∴CE=CD=,∠CEO=∠DEB=90°,
    ∵∠CDB=30°,
    ∴∠COB=2∠CDB=60°,
    ∴∠OCE=30°,
    ∴,
    ∴,
    又∵,即
    ∴,
    在△OCE和△BDE中,

    ∴△OCE≌△BDE(AAS),

    ∴阴影部分的面积S=S扇形COB=,
    故选D.
    【点睛】
    本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.
    7、B
    【分析】
    连接OC.根据确定,,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出.
    【详解】
    解:如下图所示,连接OC.

    ∵,
    ∴,.
    ∴.
    ∵.
    ∴.

    ∵和分别是所对的圆周角和圆心角,
    ∴.
    故选:B.
    【点睛】
    本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.
    8、C
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是轴对称图形,是中心对称图形,故此选项符合题意;
    D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:C.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    9、B
    【分析】
    根据旋转的性质及抛物线的性质即可确定答案.
    【详解】
    抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.
    故选:B
    【点睛】
    本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.
    10、D
    【分析】
    根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.
    【详解】
    解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,
    ∴∠ECF=90°,CE=CF,
    ∴△CEF是等腰直角三角形,
    故选:D.
    【点睛】
    本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.
    二、填空题
    1、##
    【分析】
    连接,延长交于点,连接,先根据圆周角定理和圆的性质可得,再根据特殊角的三角函数值可得,从而可得,作,交于点,从而可得,然后在中,利用直角三角形的性质和勾股定理可得,设,从而可得,利用直角三角形的面积公式可求出的值,由此即可得.
    【详解】
    解:如图,连接,延长交于点,连接,
    都是的直径,



    在中,,

    平分,且,




    如图,作,交于点,

    在中,,

    设,则,


    解得或(不符题意,舍去),
    则,
    故答案为:.

    【点睛】
    本题考查了特殊角的三角函数值、圆周角定理、含角的直角三角形的性质等知识点,通过作辅助线,构造直角三角形和等腰三角形是解题关键.
    2、②④
    【分析】
    将所给四个条件逐一判断即可得出结论.
    【详解】
    解:在中,
    ①当∠BAC > 60°时,若时,点E与点A重合,不符合题意,故①不满足;
    ②当∠ABC时,点E与点A重合,不符合题意,当∠ABC时,点E与点O不关于AD对称,当时,点E关于直线AD的对称点在线段OA上,
    所以,当45° < ∠ABC < 60°时,点E关于直线AD的对称点在线段OA上,故②满足条件;
    ③当时,点E关于直线AD的对称点在线段OA上,故③不满足条件;
    ④当AB < DE < AB时,点E关于直线AD的对称点在线段OA上,故④满足条件;
    所以,要使得与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是45° < ∠ABC < 60°或AB < DE < AB
    故答案为②④
    【点睛】
    本题考查了圆周角定理,正确判断出每种情况是解答本题的关键.
    3、
    【分析】
    连接OC交AB于点D,再连接OA.根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.
    【详解】
    解:如下图所示,连接OC交AB于点D,再连接OA.

    ∵折叠后弧的中点与圆心重叠,
    ∴,OD=CD.
    ∴AD=BD.
    ∵圆形纸片的半径为10cm,
    ∴OA=OC=10cm.
    ∴OD=5cm.
    ∴cm.
    ∴BD=cm.
    ∴cm.
    故答案为:.
    【点睛】
    本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.
    4、140
    【分析】
    作的外接圆,根据三角形内心的性质可得:,,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.
    【详解】
    解:如图所示,作的外接圆,

    ∵点I是的内心,
    ∴BI,CI分别平分和,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵点O是的外心,
    ∴,
    故答案为:140.
    【点睛】
    题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.
    5、35°
    【分析】
    根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】
    解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,
    ∴∠AOD=∠BOC=30°,AO=DO,
    ∵∠AOC=100°,
    ∴∠BOD=100°−30°×2=40°,
    ∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,
    由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.
    故答案为:35°.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
    三、解答题
    1、(1)见详解;(2)
    【分析】
    (1)连接OD,由圆周角定理可得∠AOD=∠ABC,从而得OD∥BC,进而即可得到结论;
    (2)连接AC,交OD于点F,利用勾股定理可得AC,,再证明四边形DFCE是矩形,进而即可求解.
    【详解】
    (1)证明:连接OD,

    ∵是的中点,
    ∴∠ABC=2∠ABD,
    ∵∠AOD=2∠ABD,
    ∴∠AOD=∠ABC,
    ∴OD∥BC,
    ∵,
    ∴,
    ∴是的切线;
    (2)连接AC,交OD于点F,

    ∵AB是直径,
    ∴∠ACB=90°,
    ∴AC=,
    ∵是的中点,
    ∴OD⊥AC,AF=CF=3,
    ∴,
    ∴DF=5-4=1,
    ∵∠E=∠EDF=∠DFC=90°,
    ∴四边形DFCE是矩形,
    ∴DE=CF=3,CE=DF=1,
    ∴,
    ∴AD=CD=,
    ∵∠ADB=90°,

    【点睛】
    本题主要考查切线的判定定理,圆周角定理以及勾股定理,添加辅助线构造直角三角形和矩形,是解题的关键.
    2、(1);(2);(3)
    【分析】
    (1)如图,过作 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;
    (2)先求解 再结合(1)的结论可得答案;
    (3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.
    【详解】
    解:(1)如图,过作 垂足分别为 连接





    四边形为矩形,
    由勾股定理可得: 而

    四边形为正方形,



    (2)如图,过作 垂足分别为

    由(1)得:四边形为正方形,

    OA=2,∠OAB=15°,



    (3)如图,连接










    【点睛】
    本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.
    3、(1)见详解;(2)7
    【分析】
    (1)根据切线的性质和矩形的判定定理即可得到结论;
    (2)根据切线长定理可得AB=AC,BE=DE,再利用勾股定理即可求解.
    【详解】
    (1)证明:∵,DE是的两条切线,于点
    ∴∠EFC=∠EDC=∠FCD=90°,
    ∴四边形是矩形;
    (2)∵四边形是矩形,
    ∴EF=,CF=,
    ∵,,DE是的两条切线,
    ∴AB=AC,BE=DE,
    设AB=AC=x,则AE=x+2,AF=x-2,
    在中,,
    解得:x=5,
    ∴AC=5+2=7.
    【点睛】
    本题主要考查切线长定理和勾股定理以及矩形的判定定理,掌握切线长定理以及勾股定理是解题的关键.
    4、(1)①OA′,图形见详解;②2;③ “转后距”为;(2)t的取值范围为t<-5或0<t<2或.
    【分析】
    (1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′.
    ②∵点C为图形N,求出OC=2最短距离;
    ③过点O作OF⊥AC于F,先证△OAC为等边三角形,OF⊥AC,根据勾股定理求出OF=即可;
    (2)点,点,可求tan∠OPQ=,得出当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,得出∠CAB=∠ABC=30°,分三种情况,当°,当点P在点B右边,PB=t-4,BD>1,列不等式,解得,当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,PB=2PE>2×1即4-t>2解得t<2,当t=0时,OA′=2,A′Q=2-1=1,t>0,当点P在B′左边,PB′>1,OB′=OB=4,t<-5即可.
    【详解】
    解:(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′;
    ②∵点C为图形N,OC=2为图形M与图形N的“转后距”,
    ∴“转后距”为2,
    故答案为2;
    ③线段AC为图形N,
    过点O作OF⊥AC于F,
    根据勾股定理OA=,AC=,
    ∴OA=AC=OC=2,
    ∴△OAC为等边三角形,
    ∵OF⊥AC,
    ∴AF=CF=1,
    ∴OF=,
    ∴“转后距”为;

    (2)∵点,点,
    ∴tan∠OPQ=,
    ∴当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,
    ∵CB=4-2=2=AC,∠ACO=60°,
    ∴∠CAB=∠ABC=30°,
    分三种情况,
    当°,当点P在点B右边,PB=t-4,BD>1,
    ∴BPsin60>1,
    ∴,
    解得;

    当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,
    ∴∠OEB=180°-∠EPB-∠ABC=180°-60°-30°=90°,
    ∵PB=4-t,
    ∴PB=2PE>2×1即4-t>2,
    解得t<2,
    当t=0时,点P与原点O重合,OA′=2,A′Q=2-1=1,
    ∴t>0,
    ∴0<t<2;

    当点P在B′左边,PB′>1,OB′=OB=4,
    ∴t<-5;

    综合t的取值范围为t<-5或0<t<2或.
    【点睛】
    本题考查图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理,掌握图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理是解题关键.
    5、(1)见解析;(2)BC,90°,直径所对的圆周角是直角
    【分析】
    (1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交⊙O于点C,D;连结AC、BC即可;
    (2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出∠ACB=90°即可.
    【详解】
    (1)①作直径AB;
    ②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;
    ③作直线MO交⊙O于点C,D;
    ④连接AC,BC.
    所以△ABC就是所求的等腰直角三角形.

    (2)证明:连接MA,MB.
    ∵MA=MB,OA=OB,
    ∴MO是AB的垂直平分线.
    ∴AC=BC.
    ∵AB是直径,
    ∴∠ACB=90°(直径所对的圆周角是直角) .
    ∴△ABC是等腰直角三角形.
    故答案为:BC,90°,直径所对的圆周角是直角.
    【点睛】
    本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键.

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试综合训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共34页。

    沪科版九年级下册第24章 圆综合与测试同步练习题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步练习题,共25页。试卷主要包含了如图,是的直径,,下列判断正确的个数有,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试精练:

    这是一份数学九年级下册第24章 圆综合与测试精练,共30页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map