数学九年级下册第24章 圆综合与测试同步测试题
展开
这是一份数学九年级下册第24章 圆综合与测试同步测试题,共32页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )
A.45° B.60° C.90° D.120°
2、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
3、的边经过圆心,与圆相切于点,若,则的大小等于( )
A. B. C. D.
4、点P(-3,1)关于原点对称的点的坐标是( )
A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)
5、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )
A.19° B.38° C.52° D.76°
6、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是( )
A.1cm B.2cm C.2cm D.4cm
7、下列图形中,既是中心对称图形也是轴对称图形的是( )
A. B. C. D.
8、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为( )
A.64° B.52° C.42° D.36°
9、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
A.OP>4 B.0≤OP2 D.0≤OP4,
故选:A.
【点睛】
此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
10、B
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.
【详解】
A.不是中心对称图形,故本选项不符合题意;
B.是中心对称图形,故本选项符合题意;
C.不是中心对称图形,故本选项不符合题意;
D.不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、##
【分析】
连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、、三点共线时,最小;求出,在中,,所以,即为所求.
【详解】
解:连接,取的中点,连接,
,
点在以为圆心,为半径的圆上,
当、、三点共线时,最小,
是直径,
,
,,
,,
在中,,
,
故答案为:.
【点睛】
本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.
2、
【分析】
绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
【详解】
解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是
故答案为:
【点睛】
本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.
3、
【分析】
设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.
【详解】
解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为,
根据题意可得:,
解得:,
故答案是:.
【点睛】
本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.
4、1+
【分析】
过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理,
得出CD=AE=,根据勾股定理CO=,当OD=CD时OC最大,OC=此时解方程即可.
【详解】
解:过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,
∵点A(3,0)
∴AD=x-3,
∵为等腰直角三角形,
∴AB=AC,∠BAC=90°,
∴∠BAE+∠CAD=180°-∠BAC=180°-90°=90°,
∵CD⊥x轴, BE⊥x轴,
∴∠BEA=∠ADC=90°,
∴∠ACD+∠CAD=90°,
∴∠ACD=∠BAE,
在△BAE和△ACD中,
,
∴△BAE≌△ACD(AAS),
∴BE=AD=x-3,EA=DC,
在Rt△EBO中,OB=1,BE= x-3,
根据勾股定理,
∴EA=OE+OA=,
∴CD=AE=,
∴CO=,
当OD=CD时OC最大,OC=,此时,
∴,
∴,
∴,
∴,(舍去),
∴线段OC长度的最大值为.
故答案为:1+.
【点睛】
本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键.
5、(1)见解析;(2)120°;(3)
【分析】
(1)根据旋转的性质和全等三角形的判定解答即可;
(2)根据等腰三角形的性质求得∠ABD=90°-,∠BAE=+30°,根据菱形的邻角互补求解即可;
(3)连接AF,根据菱形的性质和全等三角形的性质可求得∠FAC=45°,∠FCA=30°,过F作FG⊥AC于G,设FG=x,根据等腰直角三角形的性质和含30°角的直角三角形的性质求解即可.
【详解】
解:(1)由旋转得:AB=AD,AC=AE,∠BAD=∠CAE=,
∵AB=AC,
∴AB=AC=AD=AE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
(2)∵AB=AD,∠BAD=,∠BAC=30°,
∴∠ABD=(180°-∠BAD)÷2=(180°-)÷2=90°-,∠BAE=+30°,
∵四边形ABFE是菱形,
∴∠BAE+∠ABD=180°,即+30°+90°-=180°,
解得:=120°;
(3)连接AF,
∵四边形ABFE是菱形,∠BAE=+30°=150°,
∴∠BAF=∠BAE=75°,又∠BAC=30°,
∴∠FAC=75°-30°=45°,
∵△ABD≌△ACE,
∴∠FCA=∠ABD=90°-=30°,
过F作FG⊥AC于G,设FG=x,
在Rt△AGF中,∠FAG=45°,∠AGF=90°,
∴∠AFG=∠FAG=45°,
∴△AGF是等腰直角三角形,
∴AG=FG=x,
在在Rt△AGF中,∠FCG=30°,∠FGC=90°,
∴CF=2FG=2x,,
∵AC=AB=2,又AG+CG=AC,
∴,
解得:,
∴CF=2x= .
【点睛】
本题考查全等三角形的判定与性质、旋转的性质、菱形的性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、三角形的内角和定理、解一元一次方程等知识,熟练掌握相关知识的联系与运用是解答的关键.
三、解答题
1、(1)4;(2)-1或-7
【分析】
(1)如图,且三点在一条直线上的情况,连接,过点向作垂线交点为,在直角三角形中,,,可求的长;
(2)如图,过点向作垂线交点为,过点作轴垂线交于点,作交点为;由,知,,点G坐标为,得,由知的值,从而得到的值.
【详解】
解:(1)∵∠DAD1=30°且D1、C1、O三点在一条直线上
∴如图所示,连接,过点向作垂线交点为
∴
∵
.
(2)如图过点向作垂线交点为,过点作轴垂线交于点,作交点为
,
在和中
点横坐标可表示为
∴p+q=-7或-1.
【点睛】
本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系.
2、(1)①BC⊥CF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.
【分析】
(1)①如图所示,BC⊥CF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;
②根据AD⊥BC,BC⊥CF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;
(2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.
【详解】
解:(1)①如图所示,BC⊥CF.
∵将线段AE逆时针旋转90°得到线段AF,
∴AE=AF,∠EAF=90°,
∴∠EAC+∠CAF=90°,
∵,,
∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF(SAS),
∴∠ABE=∠ACF=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
∴BC⊥CF;
②∵AD⊥BC,BC⊥CF.
∴AD∥CF,
∴∠BDG=∠BCF=90°,∠BGD=∠BFC,
∴△BDG∽△BCF,
∴,
∵,AD⊥BC,
∴BD=DC=,
∴,
∴,
∴,
∴BG=GF;
(2)2AE2=4AG2+BE2.延长BA交CF延长线于H,
∵AD⊥BC,AB=AC,
∴AD平分∠BAC,
∴∠BAD=∠CAD=,
∵BG=GF,AG∥HF,
∴∠BAG=∠H=45°,∠AGB=∠HFB,
∴△BAG∽△BHF,
∴,
∴HF=2AG,
∵∠ACE=45°,
∴∠ACE =∠H,
∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,
∴∠EAC=∠FAH,
在△AEC和△AFH中,
,
∴△AEC≌△AFH(AAS),
∴EC=FH=2AG,
在Rt△AEF中,根据勾股定理,
在Rt△ECF中,即.
【点睛】
本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.
3、
(1)是等腰直角三角形,证明见解析
(2)周长最小值为。最大值为
【分析】
(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;
(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.
(1)
连接BD,CE,如图,
∵,,,
∴
∴
∴
∴BD=CE,
∵点M,N,P分别是的中点
∴//,,PN//BD,PN=BD
∴PM=PN,
∵PN//BD
∴∠PNC=∠DBC
∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90°
∴
∴是等腰直角三角形;
(2)
由(1)知,是等腰直角三角形
∴
∴的周长为
∵
∴的周长为
当BD最小时即点D在AB上,此时周长最小,
∵AB=8,AD=3
∴BD的最小值为AB-AD=8-3=5
∴周长最小为
当点D在BA的延长线上时,BD最大,此时周长最大,
∴BD=AB+AD=8+3=11
∴周长最大为
【点睛】
此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.
4、(1)见解析;(2)90°;(3)见解析
【分析】
(1)由旋转的性质可得对应边相等对应角相等,由相似三角形的判定得出△ABD∽△ACE,由相似三角形的性质即可得出结论 ;
(2)由(1)证得△ABD∽△ACE,和等腰三角形的性质得出,进而推出,由四边形的内角和定理得出结论;
(3)连接CD,由旋转的性质和等腰三角形的性质得出,CG=DG,FC=FD,由垂直平分线的判断得出A,F,G都在CD的垂直平分线上,进而得出结论.
【详解】
证明:(1)∵△ADE是由△ABC绕点A逆时针旋转某个角度得到的,
∴AB=AD,AC=AE,∠BAD=∠CAE,
∴,
∴△ABD∽△ACE,
∴,
∵AB = k·AC,
∴,
∴BD = k·EC;
(2)由(1)证得△ABD∽△ACE,
∴,
∵AB=AD,AC=AE,∠BAC = 90°,
∴,
∴,
∵,
∴,
∴∴在四边形ADGE中,,∠BAC = 90°,
∴∠CGD=360°-180°-90°=90°;
(3)连接CD,如图:
∵△ADE是由△ABC绕点A逆时针旋转某个角度得到的,∠BAC = 90°,AB = k·AC,
∴当k = 1时,△ABC和△ADE为等腰直角三角形,
∴,
∴,
∴,∴CG=DG
∵,
∴,∴FC=FD,
∴点A、点G和点F在CD的垂直平分线上,
∴A,F,G三点在同一直线上.
【点睛】
本题考查了相似三角形的性质和判定,旋转的性质,等腰直角三角形的性质和判定,垂直平分线的判定等知识点,熟练掌握相似三角形的判定和垂直平分线的判定是解题的关键.
5、(1),,;(2)
【分析】
(1)由是⊙O的直径,得到∠ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明;
(2)在直角△ODE中利用勾股定理求解即可.
【详解】
解:(1)如图②,连接,
是⊙O的直径,
,
∠ODB.(1)
为⊙O的切线,
,
,(2)
由(1)(2)得,∠ODA=∠BDE.
平分,
∴.
,
∠ODA,
.
故答案为:① ,② ,③ ;
(2)为的切线,
.
,
,
,
.
在中,
.
【点睛】
本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共33页。试卷主要包含了下列判断正确的个数有,下列说法正确的个数有,下列语句判断正确的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共39页。
这是一份初中沪科版第24章 圆综合与测试巩固练习,共31页。试卷主要包含了如图,是的直径,,下列判断正确的个数有等内容,欢迎下载使用。