终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新沪科版九年级数学下册第24章圆专题测试试题(名师精选)

    立即下载
    加入资料篮
    2022年最新沪科版九年级数学下册第24章圆专题测试试题(名师精选)第1页
    2022年最新沪科版九年级数学下册第24章圆专题测试试题(名师精选)第2页
    2022年最新沪科版九年级数学下册第24章圆专题测试试题(名师精选)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试课后复习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试课后复习题,共32页。
    沪科版九年级数学下册第24章圆专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,都是上的点,,垂足为,若,则的度数为(    A. B. C. D.2、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )A.1cm B.2cm C.2cm D.4cm3、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为(    A.4 B.6 C.8 D.104、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(    A.3 B.1 C. D.5、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为(    A.25° B.80° C.130° D.100°6、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是(    A.50° B.70° C.110° D.120°7、若的圆心角所对的弧长是,则此弧所在圆的半径为(    A.1 B.2 C.3 D.48、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为(    A.30° B.60°C.90° D.120°9、如图,DC是⊙O的直径,弦ABCDM,则下列结论不一定成立的是(    )A.AM=BM B.CM=DM C. D.10、的边经过圆心与圆相切于点,若,则的大小等于(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.2、一条弧所对的圆心角为,弧长等于,则这条弧的半径为________.3、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.4、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为______.5、如图,PMPN分别与⊙O相切于AB两点,C为⊙O上异于AB的一点,连接ACBC.若∠P=58°,则∠ACB的大小是___________.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形ABCD是半径为R的⊙O内接四边形,R=6,求正方形ABCD的边长和边心距.2、在所给的的正方形网格中,按下列要求操作:(单位正方形的边长为1)(1)请在第二象限内的格点上找一点,使是以为底的等腰三角形,且腰长是无理数,求点的坐标;(2)画出以点为中心,旋转180°后的,并求的面积.3、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:(1)当时,求的值;(2)当点E在线段AB上,如果,求y关于x的函数解析式,并写出定义域;(3)联结AM,直线AM与直线BC交于点G,当时,求AE的值.4、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PBAB,∠PBA=∠C(1)求证:PB是⊙O的切线;(2)连接OP,若OPBC,且OP=8,⊙O的半径为3,求BC的长.5、综合与实践“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;垂直于点足够长.使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则就把三等分了.为了说明这一方法的正确性,需要对其进行证明.独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整.已知:如图2,点在同一直线上,,垂足为点,________,切半圆.求证:________________.探究解决:(2)请完成证明过程.应用实践:(3)若半圆的直径为,求的长度. -参考答案-一、单选题1、B【分析】连接OC.根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC分别是所对的圆周角和圆心角,故选:B.【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.2、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过 设半径为r,即OA=OB=AB=rOM=OA•sin∠OAB=∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.3、A【分析】根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB是⊙O的直径,∵∠BAC=30°,BC=2,故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.4、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设相交于点旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.5、D【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圆周角定理得,∠AOC=2∠B=100°,故选:D.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.6、B【分析】根据旋转可得,得【详解】解:绕点逆时针旋转得到△,使点的对应点恰好落在边上,故选:B.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.7、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r则周长为2πr120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键.8、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.9、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦ABCDCD过圆心OAM=BM即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CMDM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.10、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接 与圆相切于点故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.二、填空题1、35°【分析】根据旋转的性质可得∠AOD=∠BOC=30°,AODO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,∴∠AOD=∠BOC=30°,AODO∵∠AOC=100°,∴∠BOD=100°−30°×2=40°,ADO=∠A(180°−∠AOD)=(180°−30°)=75°,由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.故答案为:35°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.2、9cm【分析】由弧长公式即可求得弧的半径.【详解】故答案为:9cm【点睛】本题考查了扇形的弧长公式,善于对弧长公式变形是关键.3、【分析】设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.【详解】解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为根据题意可得:解得:故答案是:【点睛】本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.4、1+【分析】过点CCDx轴于D,过BBEx轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理得出CD=AE=,根据勾股定理CO=,当OD=CDOC最大,OC=此时解方程即可.【详解】解:过点CCDx轴于D,过BBEx轴于E,连结OB,设OD=x∵点A(3,0)AD=x-3,为等腰直角三角形,AB=AC,∠BAC=90°,∴∠BAE+∠CAD=180°-∠BAC=180°-90°=90°,CDx轴, BEx轴,∴∠BEA=∠ADC=90°,∴∠ACD+∠CAD=90°,∴∠ACD=∠BAE在△BAE和△ACD中,∴△BAE≌△ACD(AAS),BE=AD=x-3,EA=DC在Rt△EBO中,OB=1,BE= x-3,根据勾股定理EA=OE+OA=CD=AE=CO=OD=CDOC最大,OC=,此时(舍去),∴线段OC长度的最大值为故答案为:1+【点睛】本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键.5、【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PMPN分别与⊙O相切于AB两点, 故答案为:【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.三、解答题1、边长为,边心距为【分析】过点OOEBC,垂足为E,利用圆内接四边形的性质求出∠BOC=90°,∠OBC=45°,然后在RtOBE中,根据勾股定理求出OEBE即可.【详解】解:过点OOEBC,垂足为E∵正方形ABCD是半径为R的⊙O内接四边形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6,    BE=OE                                   RtOBE中,∠BEO=90°,由勾股定理可得OE2+BE2=OB2,OE2+BE2=36,OE= BE=            BC=2BE= 即半径为6的圆内接正方形ABCD的边长为,边心距为【点睛】本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于2、(1)图见解析,点的坐标为(2)图见解析,4【分析】(1)根据题意,腰长为无理数且为以AB为底的等腰三角形,只在第二象限,作图即可确定点,然后写出点的坐标即可;(2)现确定旋转后的点,然后依次连接即可,根据旋转前后三角形的面积不变,利用表格及勾股定理确定三角形的底和高,即可得出面积.(1)解:如图所示,点的坐标为,为无理数,符合题意;(2)如图所示:点的坐标,点的坐标为∵旋转180°后的的面积等于的面积, 的面积为4.【点睛】题目主要考查等腰三角形的定义及旋转图形的作法,理解题意,熟练掌握在坐标系中旋转图形的作法是解题关键.3、(1)(2),0≤x≤1;(3)AE的值为【分析】(1)过点EEHBDH,根据正方形的边长为1,,求出EB=1-,根据正方形性质可求∠ABD=45°,根据EHBD,得出∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;(2)解:根据AE=x,求出BE=1-x,根据旋转将△ADE绕点D针旋转90°,得到△DCFCF=AE=x,根据勾股定理ED=FD=,EF=,可证△DEF为等腰直角三角形,先证△BEM∽△FDM,得出,再证△EMD∽△BMF,得出,两式相乘得出,整理即可;(3)当点GBC上,,先证△BGM∽△DAM,得出,由(2)知BEM∽△FDM,得出,得出,结合,消去y, 当点GCB延长线上,,过MMLBC,交直线BCL,证明△BGM∽△DAM,得出,根据∠LBM=∠CBD=45°,MLBC,证出△MLB为等腰直角三角形,再证△MLB∽△DCBCD=1,ML=ML∥BE,结合△LMF∽△BEF,得出解方程即可.(1)解:过点EEHBDH∵正方形的边长为1,EB=1-BD为正方形对角线,BD平分∠ABC∴∠ABD=45°,EHBD∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,EH=BHEH=BH=BEsin45=AB=BDcos45°,DH=DB-BH=(2)解:如上图,∵AE=xBE=1-x∵将△ADE绕点D针旋转90°,得到△DCFCF=AE=xED=FD=,BF=BC+CF=1+x在Rt△EBFEF=∵∠EDF=90°,ED=FD∴△DEF为等腰直角三角形,∴∠DFE=∠DEF=45°,∴∠EBM=∠MFD=45°,∵∠EMB=∠DMF∴△BEM∽△FDM,即∵∠DEM=∠FBM=45°,∠EMD=∠BMF∴△EMD∽△BMF,即,0≤x≤1;(3)解:当点GBC上,∵四边形ABCD为正方形,AD∥BG∴∠DAM=∠BGM,∠ADM=∠GBM∴△BGM∽△DAM∵由(2)知△BEM∽△FDMDB=舍去;当点GCB延长线上,,过MMLBC,交直线BCLGB∥AD∴∴∠DAM=∠BGM,∠ADM=∠GBM∴△BGM∽△DAM∵∠LBM=∠CBD=45°,MLBC∴△MLB为等腰直角三角形,ML∥CD∴∠LMB=∠CDB,∠L=∠DCB∴△MLB∽△DCBCD=1,ML=ML∥BE∴∠L=∠FBE,∠LMF=∠BEF∴△LMF∽△BEFBE=AE-AB=x-1,LF=LB+BC+CF=BF=BC+CF=1+x整理得:解得舍去,AE的值为【点睛】本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.4、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长.(1)证明:连接,如图所示:的直径,的切线;(2)解:的半径为【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.5、(1)三等分;(2)见解析;(3)【分析】(1)根据题意即可得;(2)先证明全等,然后根据全等的性质可得,再由圆的切线的性质可得,可得三个角相等,即可证明结论;(3)连,延长相交于点,由(2)结论可得,再由切线的性质,然后利用勾股定理及线段间的数量关系可得,最后利用相似三角形的判定和性质求解即可得.【详解】解:(1)三等分,故答案为:三等分,(2)证明:在中,的切线.都是的切线,三等分.(3)如图,连,延长相交于点由(2),知的切线,∵半径∴由勾股定理得,在中,,即【点睛】题目主要考查全等三角形的判定和性质,相似三角形的判定和性质,圆的切线的性质,勾股定理等,理解题意,结合图形综合运用这些知识点是解题关键. 

    相关试卷

    沪科版第24章 圆综合与测试同步测试题:

    这是一份沪科版第24章 圆综合与测试同步测试题,共29页。试卷主要包含了如图,是的直径,,将一把直尺等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试课后作业题:

    这是一份沪科版九年级下册第24章 圆综合与测试课后作业题,共28页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试一课一练:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试一课一练,共27页。试卷主要包含了下列判断正确的个数有,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map