年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练沪科版九年级数学下册第24章圆专项练习试题(含详细解析)

    立即下载
    加入资料篮
    2022年强化训练沪科版九年级数学下册第24章圆专项练习试题(含详细解析)第1页
    2022年强化训练沪科版九年级数学下册第24章圆专项练习试题(含详细解析)第2页
    2022年强化训练沪科版九年级数学下册第24章圆专项练习试题(含详细解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试巩固练习

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习,共26页。
    沪科版九年级数学下册第24章圆专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,可以看作是中心对称图形的是(    A. B. C. D.2、如图,ABC是正方形网格中的三个格点,则是(    A.优弧 B.劣弧 C.半圆 D.无法判断3、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是(  )A..等腰三角形 B.等边三角形C..直角三角形 D..等腰直角三角形4、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为(   A.3 B.2 C.1 D.5、下列各点中,关于原点对称的两个点是(  )A.(﹣5,0)与(0,5) B.(0,2)与(2,0)C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)6、如图,的直径,外一点,过的切线,切点为,连接,点右侧的半圆周上运动(不与重合),则的大小是(    A.19° B.38° C.52° D.76°7、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是(    A.50° B.60° C.40° D.30°8、如图,PAPB是⊙O的切线,AB为切点,PA=4,则PB的长度为(    A.3 B.4 C.5 D.69、计算半径为1,圆心角为的扇形面积为(    A. B. C. D.10、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为(  )A.5厘米 B.4厘米 C.厘米 D.厘米第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在⊙O中,∠BOC=80°,则∠A=___________°.2、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______. 3、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________4、到点的距离等于8厘米的点的轨迹是__.5、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点ABC的距离均等于aa为常数).那么常数a的值等于________.三、解答题(5小题,每小题10分,共计50分)1、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).2、下面是“过圆外一点作圆的切线”的尺规作图过程.已知:⊙O和⊙O外一点P求作:过点P的⊙O的切线.作法:如图,(1)连接OP(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于MN两点;(3)作直线MN,交OP于点C(4)以点C为圆心,CO的长为半径作圆,交⊙OAB两点;(5)作直线PAPB.直线PAPB即为所求作⊙O的切线完成如下证明:证明:连接OAOBOP是⊙C直径,点A在⊙C∴∠OAP=90°(___________)(填推理的依据).OAAP又∵点A在⊙O上,∴直线PA是⊙O的切线(___________)(填推理的依据).同理可证直线PB是⊙O的切线.3、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BCDC或其所在直线相交于点EF,连接EF(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CBDC相交时,如图1所示,请直接写出线段BEDFEF满足的数量关系;(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CBDC的延长线相交时,如图2所示,请直接写出线段BEDFEF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.4、如图,已知等边内接于⊙OD的中点,连接DB,DC,过点CAB的平行线,交BD的延长线于点E.(1)求证:CE是⊙O的切线;(2)若AB的长为6,求CE的长.5、如图,的直径,的切线,弦,直线的延长线于点,连接求证:(1)(2) -参考答案-一、单选题1、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不符合题意;D.不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接ABACBC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.3、D【分析】根据旋转的性质推出相等的边CECF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.【详解】解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,∴∠ECF=90°,CECF∴△CEF是等腰直角三角形,故选:D【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.4、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.【详解】解:连接OC,如图AB 为⊙O 的直径,CDAB,垂足为点 ECD=8,故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出5、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.6、B【分析】连接的直径,求解 结合的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 的直径, 的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.7、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.8、B【分析】由切线的性质可推出.再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PAPB是⊙O的切线,AB为切点,∴在中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.9、B【分析】直接根据扇形的面积公式计算即可.【详解】故选:B.【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.10、D【分析】根据题意先求出弦AC的长,再过点OOBAC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中根据勾股定理求出r的值即可.【详解】解:∵杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点OOBAC于点BAB=AC=×6=3厘米,设杯口的半径为r,则OB=r-2,OA=rRtAOB中,OA2=OB2+AB2,即r2=(r-2)2+32解得r=厘米.故选:D.【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题1、40°度【分析】直接根据圆周角定理即可得出结论.【详解】解:是同弧所对的圆心角与圆周角,故答案为:【点睛】本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、6【分析】如图,连接OAOBOCODOEOF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OAOBOCODOEOF∵正六边形ABCDEFABBCCDDEEFFA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,的周长为的半径为正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.3、    4    【分析】设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.【详解】解:设一直角边长为x,另一直角边长为(6-x),∵三角形是直角三角形,∴根据勾股定理整理得:解得这个直角三角形的斜边长为外接圆的直径,∴外接圆的半径为cm,三角形面积为故答案为【点睛】本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.4、以点为圆心,8厘米长为半径的圆【分析】由题意直接根据圆的定义进行分析即可解答.【详解】到点的距离等于8厘米的点的轨迹是:以点为圆心,2厘米长为半径的圆.故答案为:以点为圆心,8厘米长为半径的圆.【点睛】本题主要考查了圆的定义,正确理解定义是关键,注意掌握圆的定义是在同一平面内到定点的距离等于定长的点的集合.5、5【分析】直接利用直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:根据直角三角形斜边上的中线等于斜边的一半,即可知道点到点ABC的距离相等,如下图:故答案是:5.【点睛】本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.三、解答题1、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.【分析】先画出点AB关于点C中心对称的点A',B',再连接A',B',C即可解题.【详解】解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.【点睛】本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.2、直径所对的圆周角是直角    经过半径的外端并且垂直于这条半径的直线是圆的切线    【分析】连接OAOB,根据圆周角定理可知∠OAP=90°,再依据切线的判定证明结论;【详解】证明:连接OAOBOP是⊙C直径,点A在⊙C上,∴∠OAP=90°(直径所对的圆周角是直角),OAAP又∵点A在⊙O上,∴直线PA是⊙O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),同理可证直线PB是⊙O的切线,故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.3、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为【分析】(1)延长FDG,使DG=BE,连接AG,先证△ABE≌△ADG,再证△GAF≌△EAF即可;(2)在DC上截取DH=BE,连接AH,先证△ADH≌△ABE,再证△HAFEAF即可;(3)分两种情形分别求解即可解决问题.【详解】解:(1)结论:EF=BE+DF理由:延长FDG,使DG=BE,连接AG,如图①,ABCD是正方形,AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADGAAS),AE=AG,∠DAG=∠EAB∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,AF=AF∴△GAF≌△EAFAAS),EF=GFGF=DF+DG=DF+BE即:EF=DF+BE(2)结论:EF=DF-BE理由:在DC上截取DH=BE,连接AH,如图②,AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABESAS),AH=AE,∠DAH=∠EAB∵∠EAF=∠EAB+∠BAF=45°,∴∠DAH+∠BAF=45°,∴∠HAF=45°=∠EAFAF=AF∴△HAFEAFSAS),HF=EFDF=DH+HFEF=DF-BE(3)①当MA经过BC的中点E时,同(1)作辅助线,如图:FD=x,由(1)的结论得FG=EF=2+xFC=4-xRtEFC中,(x+2)2=(4-x2+22x=EF=x+2=②当NA经过BC的中点G时,同(2)作辅助线,BE=x,由(2)的结论得EC=4+xEF=FHKBC边的中点,CK=BC=2,同理可证△ABKFCKSAS),CF=AB=4,EF=FH=CF+CD-DH=8-xRtEFC中,由勾股定理得到:(4+x2+42=(8-x2x=EF=8-=综上,线段EF的长为【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.4、(1)见解析;(2)3【分析】(1)由题意连接OCOB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.【详解】解:(1)证明:如图连接OC、OB是等边三角形    又 ∵与⊙O相切; (2)∵四边形ABCD是⊙O的内接四边形,D的中点,     【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.5、(1)见解析;(2)见解析【分析】(1)连接,根据,可证.从而可得,即可证明,故(2)证明,可得,即可证明【详解】证明:(1)连接,如图:的直径,的切线,中,的直径,,即  ,即(2)由(1)知:又∵  【点睛】本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明,从而得到 

    相关试卷

    沪科版九年级下册第24章 圆综合与测试同步测试题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步测试题,共34页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    沪科版第24章 圆综合与测试课时练习:

    这是一份沪科版第24章 圆综合与测试课时练习,共27页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试同步练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共31页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map