终身会员
搜索
    上传资料 赚现金

    2022年最新沪科版九年级数学下册第24章圆定向测评试题(含详解)

    立即下载
    加入资料篮
    2022年最新沪科版九年级数学下册第24章圆定向测评试题(含详解)第1页
    2022年最新沪科版九年级数学下册第24章圆定向测评试题(含详解)第2页
    2022年最新沪科版九年级数学下册第24章圆定向测评试题(含详解)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试课时作业

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时作业,共25页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆定向测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点AB的对应点分别为DE,连接AD.当点ADE在同一条直线上时,则∠BAD的大小是(  )

    A.80° B.70° C.60° D.50°

    2、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12

    3、计算半径为1,圆心角为的扇形面积为(   

    A. B. C. D.

    4、点P(3,﹣2)关于原点O的对称点的坐标是(  )

    A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)

    5、如图,在中,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为(   

    A.1 B.2 C.3 D.4

    6、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是(   

    A. B.1 C.2 D.

    7、如图,点ABC均在⊙O上,连接OAOBACBC,如果OAOB,那么∠C的度数为(   

    A.22.5° B.45° C.90° D.67.5°

    8、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积(   

    A.不变 B.面积扩大为原来的3倍

    C.面积扩大为原来的9倍 D.面积缩小为原来的

    9、下列图案中既是轴对称图形,又是中心对称图形的是(   

    A.  B.

    C. D.

    10、如图图案中,不是中心对称图形的是(   

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、一条弧所对的圆心角为,弧长等于,则这条弧的半径为________.

    2、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.

    3、如图,在平面直角坐标系xOy中,Px轴正半轴上一点.已知点的外接圆.

    (1)点M的纵坐标为______;

    (2)当最大时,点P的坐标为______.

    4、在平面直角坐标系中,点关于原点对称的点的坐标是______.

    5、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,已知的直径,于点C,交的延长线于点D,且

    (1)求的大小;

    (2)若,求的长.

    2、如图,在RtABC中,∠B=90°,∠BAC的平分线ADBC于点D,点EAC上,以AE为直径的⊙O经过点D

    (1)求证:

    BC是⊙O的切线;

    (2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.

    3、如图,AB是⊙O的直径,弦CDAB于点EAM是△ACD的外角∠DAF的平分线.

    (1)求证:AM是⊙O的切线;

    (2)连接CO并延长交AM于点N,若⊙O的半径为2,∠ANC = 30°,求CD的长.

    4、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.

    (1)图1中的“弦图”的四个直角三角形组成的图形是     对称图形(填“轴”或“中心”).

    (2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:

    ①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;

    ②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.

    5、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    根据三角形旋转得出,根据点ADE在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.

    【详解】

    证明:∵绕点C逆时针旋转得到

    ∴∠ADC=∠DAC

    ∵点ADE在同一条直线上,

    ∴∠DAC=50°,

    ∴∠BAD=∠BAC-∠DAC=80°

    故选A.

    【点睛】

    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.

    2、D

    【分析】

    连接OBOC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.

    【详解】

    解:连接OBOC

    ∵∠BAC=30°,

    ∴∠BOC=60°.

    OB=OCBC=6,

    ∴△OBC是等边三角形,

    OB=BC=6.

    ∴⊙O的直径等于12.

    故选:D.

    【点睛】

    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.

    3、B

    【分析】

    直接根据扇形的面积公式计算即可.

    【详解】

    故选:B.

    【点睛】

    本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.

    4、B

    【分析】

    根据“平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.

    【详解】

    解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).

    故选:B

    【点睛】

    本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.

    5、B

    【分析】

    由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.

    【详解】

    由题意以及旋转的性质知AD=AB,∠BAD=60°

    ∴∠ADB=∠ABD

    ∵∠ADB+∠ABD+∠BAD=180°

    ∴∠ADB=∠ABD=60°

    为等边三角形,即AB= AD =BD=2

    CD=BC-BD=4-2=2

    故选:B.

    【点睛】

    本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.

    6、A

    【分析】

    CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据∠BCH=30°求解即可.

    【详解】

    解:如图,取BC的中点G,连接MG

    ∵旋转角为60°,

    ∴∠MBH+∠HBN=60°,

    又∵∠MBH+∠MBC=∠ABC=60°,

    ∴∠HBN=∠GBM

    CH是等边△ABC的对称轴,

    HB=AB

    HB=BG

    又∵MB旋转到BN

    BM=BN

    在△MBG和△NBH中,

    ∴△MBG≌△NBHSAS),

    MG=NH

    根据垂线段最短,MGCH时,MG最短,即HN最短,

    此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,

    MG=CG=

    HN=

    故选A.

    【点睛】

    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.

    7、B

    【分析】

    根据同弧所对的圆周角是圆心角的一半即可得.

    【详解】

    解:∵

    故选:B.

    【点睛】

    题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.

    8、A

    【分析】

    设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.

    【详解】

    设原来扇形的半径为r,圆心角为n

    ∴原来扇形的面积为

    ∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的

    ∴变化后的扇形的半径为3r,圆心角为

    ∴变化后的扇形的面积为

    ∴扇形的面积不变.

    故选:A.

    【点睛】

    本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.

    9、B

    【分析】

    根据中心对称图形与轴对称图形的概念逐项分析

    【详解】

    解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;

    B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;

    C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;

    D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;

    故选B

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.

    10、C

    【分析】

    根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.

    【详解】

    解:A、是中心对称图形,故A选项不合题意;

    B、是中心对称图形,故B选项不合题意;

    C、不是中心对称图形,故C选项符合题意;

    D、是中心对称图形,故D选项不合题意;

    故选:C

    【点睛】

    本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.

    二、填空题

    1、9cm

    【分析】

    由弧长公式即可求得弧的半径.

    【详解】

    故答案为:9cm

    【点睛】

    本题考查了扇形的弧长公式,善于对弧长公式变形是关键.

    2、60

    【分析】

    正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.

    【详解】

    360°÷6=60°

    故答案为:60

    【点睛】

    本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.

    3、5    (4,0)   

    【分析】

    (1)根据点M在线段AB的垂直平分线上求解即可;

    (2)点P在⊙M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可.

    【详解】

    解:(1)∵⊙M为△ABP的外接圆,

    ∴点M在线段AB的垂直平分线上,

    A(0,2),B(0,8),

    ∴点M的纵坐标为:

    故答案为:5;

    (2)过点,作⊙Mx轴相切,则点M在切点处时,最大,

    理由:

    若点x轴正半轴上异于切点P的任意一点,

    交⊙M于点E,连接AE,则∠AEB=∠APB

    ∵∠AEB是ΔAE的外角,

    ∴∠AEB>∠AB,

    ∵∠APB>∠AB,即点P在切点处时,∠APB最大,

    ∵⊙M经过点A(0,2)、B(0,8),

    ∴点M在线段AB的垂直平分线上,即点M在直线y=5上,

    ∵⊙Mx轴相切于点PMPx轴,从而MP=5,即⊙M的半径为5,

    AB的中点为D,连接MDAM,如上图,则MDABAD=BD=AB=3,BM=MP=5,

    而∠POD=90°,

    ∴四边形OPMD是矩形,从而OP=MD

    由勾股定理,得

    MD=

    OP=MD=4,

    ∴点P的坐标为(4,0),

    故答案为:(4,0).

    【点睛】

    本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.

    4、(3,4)

    【分析】

    关于原点对称的点,横坐标与纵坐标都互为相反数.

    【详解】

    :由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),

    故答案为:(3,4).

    【点睛】

    本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.

    5、

    【分析】

    绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.

    【详解】

    解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是

    故答案为:

    【点睛】

    本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.

    三、解答题

    1、

    (1)45°

    (2)

    【分析】

    (1)连接OC,根据切线的性质得到OCCD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;

    (2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.

    (1)

    连接

    ,即

    是⊙的切线,

    ,即

    (2)

    的长

    【点睛】

    本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.

    2、(1)①见解析;②见解析;(2)

    【分析】

    (1)①连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;

    ②连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;

    (2)证明是等边三角形,四边形DOAF是菱形,,结合扇形面积公式解题.

    【详解】

    解:(1)①连接OD

    是∠BAC的平分线

    是⊙O的切线;

    ②连接DE

    是⊙O的切线,

    是直径

    (2)连接DEODDFOF,

    设圆的半径为R

    F是劣弧AD的中点,

    OFDA中垂线

    DF=AF

    是等边三角形,四边形DOAF是菱形,

    【点睛】

    本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键.

    3、

    (1)见解析

    (2)CD=2

    【分析】

    (1)由题意易得BC=BD,∠DAM=DAF,则有∠CAB=DAB,进而可得∠BAM=90°,然后问题可求证;

    (2)由题意易得CD//AM,∠ANC=OCE=30°,然后可得OE=1,CE=,进而问题可求解.

    (1)

    证明:∵AB是⊙O的直径,弦CDAB于点E

    BC=BD

    ∴∠CAB=DAB

    AM是∠DAF的平分线

    ∴∠DAM=DAF

    ∵∠CAD+DAF=180°

    ∴∠DAB+DAM=90°

    即∠BAM=90°,ABAM

    AM是⊙O的切线

    (2)

    解:∵ABCDABAM

     CD//AM

    ∴∠ANC=OCE=30°

    Rt△OCE中,OC=2

    OE=1,CE=

    AB是⊙O的直径,弦CDAB于点E

    CD=2CE=2

    【点睛】

    本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键.

    4、

    (1)中心

    (2)见解析

    【分析】

    (1)利用中心对称图形的意义得到答案即可;

    (2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;

    ②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.

    (1)

    图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,

    故答案为:中心;

    (2)

    如图2是轴对称图形而不是中心对称图形;

    图3既是轴对称图形,又是中心对称图形.

    【点睛】

    本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.

    5、2+

    【分析】

    连接ACCMAB,过点CCHOAH,设OC=a.利用勾股定理构建方程解决问题即可.

    【详解】

    解:连接ACCMAB,过点CCHOAH,设OC=a

    ∵∠AOB=90°,

    AB是直径,

    A(-4,0),B(0,2),

    ∵∠AMC=2∠AOC=120°,

    RtCOH中,

    RtACH中,AC2=AH2+CH2

    a=2+ 或2-(因为OCOB,所以2-舍弃),

    OC=2+

    故答案为:2+

    【点睛】

    本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.

     

    相关试卷

    初中数学第24章 圆综合与测试练习:

    这是一份初中数学第24章 圆综合与测试练习,共26页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试练习:

    这是一份初中数学第24章 圆综合与测试练习,共29页。

    初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题,共32页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map