![2022年最新沪科版九年级数学下册第24章圆重点解析试卷(无超纲)第1页](http://www.enxinlong.com/img-preview/2/3/12685626/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新沪科版九年级数学下册第24章圆重点解析试卷(无超纲)第2页](http://www.enxinlong.com/img-preview/2/3/12685626/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新沪科版九年级数学下册第24章圆重点解析试卷(无超纲)第3页](http://www.enxinlong.com/img-preview/2/3/12685626/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第24章 圆综合与测试课后练习题
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后练习题,共34页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )
A. B. C. D.
2、如图,点A、B、C在上,,则的度数是( )
A.100° B.50° C.40° D.25°
3、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是( )
A. B.
C.或 D.(﹣2,0)或(﹣5,0)
4、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )
A. B. C. D.
5、下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
6、点P(-3,1)关于原点对称的点的坐标是( )
A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)
7、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )
A.45° B.60° C.90° D.120°
8、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )
A.105° B.120° C.135° D.150°
9、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
10、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.
2、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B,点,为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为______.
3、两直角边分别为6、8,那么的内接圆的半径为____________.
4、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.
5、圆锥的母线长为,底面圆半径为r,则全面积为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知是的直径,是的切线,C为切点,交于点E,,,平分.
(1)求证:;
(2)求、的长.
2、解题与遐想.
如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=4,BD=5.求Rt△ABC的面积.
王小明:这道题算出来面积刚好是20,太凑巧了吧.刚好是4×5=20,有种白算的感觉…
赵丽华:我把4和5换成m、n再算一遍,△ABC的面积总是m•n!确实非常神奇了…
数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?
霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了.我怎么想不出来呢?
计算验证
(1)通过计算求出Rt△ABC的面积.
拼图演绎
(2)将Rt△ABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明.
尺规作图
(3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个Rt△ABC,使它的内切圆与斜边AB相切于点D.(保留作图的痕迹,写出必要的文字说明)
3、如图,和中,,,,连接,点M,N,P分别是的中点.
(1)请你判断的形状,并证明你的结论.
(2)将绕点A旋转,若,请直接写出周长的最大值与最小值.
4、如图1,BC是⊙O的直径,点A,P在⊙O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQ⊥AP,交PC 的延长线于点Q,AQ交⊙O于点D,已知AB=3,AC=4.
(1)求证:△APQ∽△ABC.
(2)如图2,当点C为的中点时,求AP的长.
(3)连结AO,OD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.
5、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D.
(1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);
(2)在(1)所作的图中,连接CD,若CD=BD,且AC=6.求劣弧的长.
-参考答案-
一、单选题
1、C
【分析】
过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.
【详解】
解:如图,过点A作AC⊥x轴于点C,
设 ,则 ,
∵ ,,
∴,
∵, ,
∴ ,
解得: ,
∴ ,
∴ ,
∴点 ,
∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,
∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.
故选:C
【点睛】
本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.
2、C
【分析】
先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.
【详解】
∵∠ACB=50°,
∴∠AOB=100°,
∵OA=OB,
∴∠OAB=∠OBA= 40°,
故选:C.
【点睛】
本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3、C
【分析】
由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
【详解】
解:∵直线交x轴于点A,交y轴于点B,
∴令x=0,得y=-3,令y=0,得x=-4,
∴A(-4,0),B(0,-3),
∴OA=4,OB=3,
∴AB=5,
设⊙P与直线AB相切于D,
连接PD,
则PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP= ,
∴OP= 或OP= ,
∴P或P,
故选:C.
【点睛】
本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
4、A
【分析】
如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
【详解】
解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:
四边形为正方形,则
设 而AB=2,CD=3,EF=5,结合正方形的性质可得:
而
又 而
解得:
故选A
【点睛】
本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
5、B
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.
【详解】
A.不是中心对称图形,故本选项不符合题意;
B.是中心对称图形,故本选项符合题意;
C.不是中心对称图形,故本选项不符合题意;
D.不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
6、C
【分析】
据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.
【详解】
解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).
故选:C.
【点睛】
本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.
7、B
【分析】
设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.
【详解】
解:设∠ADC=α,∠ABC=β;
∵四边形ABCO是菱形,
∴∠ABC=∠AOC;
∠ADC=β;
四边形为圆的内接四边形,
α+β=180°,
∴ ,
解得:β=120°,α=60°,则∠ADC=60°,
故选:B.
【点睛】
该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.
8、B
【分析】
由题意易得,然后根据三角形外角的性质可求解.
【详解】
解:由旋转的性质可得:,
∴;
故选B.
【点睛】
本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
9、C
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项符合题意;
D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:C.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
10、D
【分析】
连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.
【详解】
解:连接CD,如图所示:
∵点D是AB的中点,,,
∴,
∵,
∴,
在Rt△ACB中,由勾股定理可得;
故选D.
【点睛】
本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.
二、填空题
1、65
【分析】
根据切线的性质得到OA⊥AP,根据直角三角形的两锐角互余计算,得到答案.
【详解】
解:∵PA是⊙O的切线,
∴OA⊥AP,
∴,
∵∠APO=25°,
∴,
故答案为:65.
【点睛】
本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
2、1+
【分析】
过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理,
得出CD=AE=,根据勾股定理CO=,当OD=CD时OC最大,OC=此时解方程即可.
【详解】
解:过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,
∵点A(3,0)
∴AD=x-3,
∵为等腰直角三角形,
∴AB=AC,∠BAC=90°,
∴∠BAE+∠CAD=180°-∠BAC=180°-90°=90°,
∵CD⊥x轴, BE⊥x轴,
∴∠BEA=∠ADC=90°,
∴∠ACD+∠CAD=90°,
∴∠ACD=∠BAE,
在△BAE和△ACD中,
,
∴△BAE≌△ACD(AAS),
∴BE=AD=x-3,EA=DC,
在Rt△EBO中,OB=1,BE= x-3,
根据勾股定理,
∴EA=OE+OA=,
∴CD=AE=,
∴CO=,
当OD=CD时OC最大,OC=,此时,
∴,
∴,
∴,
∴,(舍去),
∴线段OC长度的最大值为.
故答案为:1+.
【点睛】
本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键.
3、5
【分析】
直角三角形外接圆的直径是斜边的长.
【详解】
解:由勾股定理得:AB==10,
∵∠ACB=90°,
∴AB是⊙O的直径,
∴这个三角形的外接圆直径是10,
∴这个三角形的外接圆半径长为5,
故答案为:5.
【点睛】
本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.
4、
【分析】
根据旋转找出规律后再确定坐标.
【详解】
∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,
∴每6次翻转为一个循环组循环,
∵,
∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,
∵,
∴,
∴翻转前进的距离为:,
如图,过点B作BG⊥x于G,
则∠BAG=60°,
∴,
,
∴,
∴点B的坐标为.
故答案为:.
【点睛】
题考查旋转的性质与正多边形,由题意找出规律是解题的关键.
5、
【分析】
根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.
【详解】
解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,
故可得,这个扇形的半径为,扇形的弧长为,
圆锥的侧面积为;
圆锥的全面积为圆锥的底面积侧面积:.
故答案为:.
【点睛】
本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.
三、解答题
1、(1)90°;(2)AC=,DE=1
【分析】
(1)如图,,可知.
(2),可求出的长;,,可求出的长.
【详解】
解(1)证明如图所示,连接,,
是直径,是的切线,平分
∴,
∴
∴.
(2)解∵,
∴
∴,
∴.
在中
∵,
∴
∴,
∴.
【点睛】
本题考查了角平分线、勾股定理、等腰三角形的性质、三角形相似的判定等知识点.解题的关键在于判定三角形相似.
2、(1)S△ABC=20;(2)见解析;(3)见解析.
【分析】
(1)设⊙O的半径为r,由切线长定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,进而求得结果;
(2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;
(3)可先计算∠AFB=135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点F作AB的垂线,再根据直径所对的圆周角是90°,确定点C.
【详解】
解:(1)如图1,
设⊙O的半径为r,
连接OE,OF,
∵⊙O内切于△ABC,
∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,
∴∠OEC=∠OFC=∠C=90°,
∴四边形ECFO是矩形,
∴CF=OE=r,CE=OF=r,
∴AC=4+r,BC=5+r,
在Rt△ABC中,由勾股定理得,
(r+4)2+(r+5)2=92,
∴r2+9r=20,
∴S△ABC=
=
=
=
=20;
(2)
如图2,
(3)设△ABC的内切圆记作⊙F,
∴AF和BF平分∠BAC和∠ABC,FD⊥AB,
∴∠BAF=∠CAB,∠ABF=,
∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,
∴∠AFB=135°,
可以按以下步骤作图(如图3):
①以BA为直径作圆,作AB的垂直平分线交圆于点E,
②以E为圆心,AE为半径作圆,
③过点D作AB的垂线,交圆于F,
④连接EF并延长交圆于C,连接AC,BC,
则△ABC就是求作的三角形.
【点睛】
本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键.
3、
(1)是等腰直角三角形,证明见解析
(2)周长最小值为。最大值为
【分析】
(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;
(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.
(1)
连接BD,CE,如图,
∵,,,
∴
∴
∴
∴BD=CE,
∵点M,N,P分别是的中点
∴//,,PN//BD,PN=BD
∴PM=PN,
∵PN//BD
∴∠PNC=∠DBC
∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90°
∴
∴是等腰直角三角形;
(2)
由(1)知,是等腰直角三角形
∴
∴的周长为
∵
∴的周长为
当BD最小时即点D在AB上,此时周长最小,
∵AB=8,AD=3
∴BD的最小值为AB-AD=8-3=5
∴周长最小为
当点D在BA的延长线上时,BD最大,此时周长最大,
∴BD=AB+AD=8+3=11
∴周长最大为
【点睛】
此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.
4、(1)见解析;(2)(3)当,时,;当时,.
【分析】
(1)通过证,,即可得;
(2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP.
(3)分类讨论, ,,,三种情况讨论,再通过勾股定理和相似即可求解.
【详解】
证明:(1)∵AQ⊥AP
∴
∵BC是⊙O的直径
∴
∴
∵
∴
(2)如图,连接CD,PD
∵BC是⊙O的直径
∴
∵AB=3,AC=4
∴利用勾股定理得:,即直径为5
∵
∴
∴DP是⊙O的直径,且DP=BC=5
∵点C为的中点
∴CD=PC
∵
∴
∴是等腰直角三角形
∴利用勾股定理得:,则
∵,
∴
∵
∴
∴,即:
∴
∴
∵
∴,即:
∴
(3)连接AO,OD,OP,CD,OD交AC于点M
∵(已证)
∴OD,OP共线,为⊙O的直径
情况一:当时
∵,
∴
∴AP=PC
∵
∴
∴
∴即
∵AP=PC
∴
∴在中,
∴
∴在中,
情况二:当时,
∵
∴
∴
同情况一:
情况三:当时
∵,
∴
∴,
∵OA=OD
∴
∴
∴
综上所述,当,时,;当时,.
【点睛】
本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.
5、(1)作图见解析;(2)
【分析】
(1)由于D点为⊙O的切点,即可得到OC=OD,且OD⊥AB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;
(2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.
【详解】
解:(1)如图所示,先作∠A的角平分线,交BC于O点,以O为圆心,OC为半径画出⊙O即为所求;
(2)如图所示,连接CD和OD,
由题意,AD为⊙O的切线,
∵OC⊥AC,且OC为半径,
∴AC为⊙O的切线,
∴AC=AD,
∴∠ACD=∠ADC,
∵CD=BD,
∴∠B=∠DCB,
∵∠ADC=∠B+∠BCD,
∴∠ACD=∠ADC=2∠DCB,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
即:3∠DCB=90°,
∴∠DCB=30°,
∵OC=OD,
∴∠DCB=∠ODC=30°,
∴∠COD=180°-2×30°=120°,
∵∠DCB=∠B=30°,
∴在Rt△ABC中,∠BAC=60°,
∵AO平分∠BAC,
∴∠CAO=∠DAO=30°,
∴在Rt△ACO中,,
∴.
【点睛】
本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试一课一练,共33页。试卷主要包含了如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。
这是一份数学九年级下册第24章 圆综合与测试练习,共48页。试卷主要包含了等边三角形等内容,欢迎下载使用。
这是一份初中数学第24章 圆综合与测试课后复习题,共33页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)