初中数学沪科版九年级下册第24章 圆综合与测试测试题
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试测试题,共29页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B. C. D.2、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是( )A..等腰三角形 B.等边三角形C..直角三角形 D..等腰直角三角形3、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为( )A. B. C. D.84、下列图形中,是中心对称图形的是( )A. B.C. D.5、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是( ).A.90° B.100° C.120° D.150°6、下列图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.7、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).A.20° B.25° C.30° D.40°8、如图图案中,不是中心对称图形的是( )A. B. C. D.9、如图,AB,CD是⊙O的弦,且,若,则的度数为( )A.30° B.40° C.45° D.60°10、下列汽车标志中既是轴对称图形又是中心对称图形的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.2、如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=___________.3、一个五边形共有__________条对角线.4、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.5、在平面直角坐标系中,已知点与点关于原点对称,则________,________.三、解答题(5小题,每小题10分,共计50分)1、如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC.(1)求证:AC为⊙O的切线;(2)若⊙O半径为2,OD=4.求线段AD的长.2、如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C.(1)求证:CD是⊙O的切线.(2)若,求阴影部分的面积.3、如图1,BC是⊙O的直径,点A,P在⊙O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQ⊥AP,交PC 的延长线于点Q,AQ交⊙O于点D,已知AB=3,AC=4.(1)求证:△APQ∽△ABC.(2)如图2,当点C为的中点时,求AP的长.(3)连结AO,OD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.4、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AD=6,求线段AE的长.5、如图1,在中,,,点D为AB边上一点.(1)若,则______;(2)如图2,将线段CD绕着点C逆时针旋转90°得到线段CE,连接AE,求证:;(3)如图3,过点A作直线CD的垂线AF,垂足为F,连接BF.直接写出BF的最小值. -参考答案-一、单选题1、B【分析】根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.2、D【分析】根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.【详解】解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故选:D.【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.3、A【分析】过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点作于点,连接, AB是的直径,,,,在中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.4、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.5、D【分析】将绕点逆时针旋转得,根据旋转的性质得,,,则为等边三角形,得到,,在中,,,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.【详解】解:为等边三角形,,可将绕点逆时针旋转得,如图,连接,,,,为等边三角形,,,在中,,,,,为直角三角形,且,.故选:D.【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.6、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.8、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C.【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.9、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.【详解】解:∵,∴,∵,∴,故选:B.【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.10、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题1、【分析】设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.【详解】解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为,根据题意可得:,解得:,故答案是:.【点睛】本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.2、5【分析】设⊙O的半径为r,则OA=r,OD=r-2,先由垂径定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【详解】解:设⊙O的半径为r,则OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半径长为5,故答案为:5.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.3、5【分析】由n边形的对角线有: 条,再把代入计算即可得.【详解】解:边形共有条对角线,五边形共有条对角线.故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.4、【分析】连接OC交AB于点D,再连接OA.根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.【详解】解:如下图所示,连接OC交AB于点D,再连接OA.∵折叠后弧的中点与圆心重叠,∴,OD=CD.∴AD=BD.∵圆形纸片的半径为10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案为:.【点睛】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.5、2 2 【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a、b即可求得答案.【详解】解:∵点和点关于原点对称,∴,∴,故答案为:2;2.【点睛】本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键.三、解答题1、(1)见解析;(2)4【分析】(1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;(2)在Rt△BOD中,勾股定理求得BD,根据sinD==,代入数值即可求得答案【详解】解:(1)连接OB,∵AB是⊙O的切线,∴OB⊥AB,即∠ABO=90°,∵BC是弦,OA⊥BC,∴CE=BE,∴AC=AB,在△AOB和△AOC中,,∴△AOB≌△AOC(SSS),∴∠ACO=∠ABO=90°,即AC⊥OC,∴AC是⊙O的切线;(2)在Rt△BOD中,由勾股定理得,BD==2,∵sinD==,⊙O半径为2,OD=4.∴=,解得AC=2,∴AD=BD+AB=4.【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.2、(1)见详解;(2)【分析】(1)连接OD,由题意易得,则有△ODB是等边三角形,然后可得△AEO也为等边三角形,进而可得OD∥AC,最后问题可求证;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圆O的半径,进而可得扇形OED和△OED的面积,则有弓形ED的面积,最后问题可求解.【详解】(1)证明:连接OD,如图所示:∵四边形BDEO是平行四边形,∴,∴△ODB是等边三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也为等边三角形,∴∠EAO=∠DOB=60°,∴AE∥OD,∴∠ODC+∠C=180°,∵CD⊥AE,∴∠C=90°,∴∠ODC=90°,∵OD是圆O的半径,∴CD是⊙O的切线.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO为等边三角形, ∴ED=OE=AE,∵CD⊥AE,∠CED=60°,∴∠CDE=30°,∴,∵,∴,∴,设△OED的高为h,∴,∴,∴.【点睛】本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键.3、(1)见解析;(2)(3)当,时,;当时,.【分析】(1)通过证,,即可得;(2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP.(3)分类讨论, ,,,三种情况讨论,再通过勾股定理和相似即可求解.【详解】证明:(1)∵AQ⊥AP∴∵BC是⊙O的直径∴∴∵∴(2)如图,连接CD,PD∵BC是⊙O的直径∴∵AB=3,AC=4∴利用勾股定理得:,即直径为5∵∴∴DP是⊙O的直径,且DP=BC=5∵点C为的中点∴CD=PC∵∴∴是等腰直角三角形∴利用勾股定理得:,则∵,∴∵∴∴,即:∴∴∵∴,即:∴(3)连接AO,OD,OP,CD,OD交AC于点M∵(已证)∴OD,OP共线,为⊙O的直径情况一:当时∵,∴∴AP=PC∵∴∴∴即∵AP=PC∴∴在中,∴∴在中,情况二:当时,∵∴∴同情况一:情况三:当时∵,∴∴,∵OA=OD∴∴∴综上所述,当,时,;当时,.【点睛】本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.4、(1)见解析;(2)6【分析】(1)连接OC,根据CE是⊙O的切线,可得∠OCE=,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE=,即可求证;(2)过点A作AF⊥EC交EC于点F,由∠AOC=,OA=OC,可得∠OAC=,从而得到∠BAD=,再由AD∥EC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.【详解】证明:(1)连接OC,∵CE是⊙O的切线,∴∠OCE=,∵∠ABC=,∴∠AOC=2∠ABC=,∵∠AOC+∠OCE=,∴AD∥EC;(2)解:过点A作AF⊥EC交EC于点F,∵∠AOC=,OA=OC,∴∠OAC=,∵∠BAC=,∴∠BAD=,∵AD∥EC,∴,∵∠OCE=,∠AOC=,∠AFC=90°,∴四边形OAFC是矩形,∵OA=OC,∴四边形OAFC是正方形,∴,∵,∴,在Rt△AFE中,,∴AE=2AF=6.【点睛】本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.5、(1)5(2)证明见解析(3)【分析】(1)过C作CM⊥AB于M,根据等腰三角形的性质求出CM和DM,再根据勾股定理计算即可;(2)连BE,先证明,即可得到直角三角形ABE,利用勾股定理证明即可;(3)取AC中点N,连接FN、BN,根据三角形BFN中三边关系判断即可.(1)过C作CM⊥AB于M,∵,∴∵∴∴在Rt中(2)连接BE,∵,,,∴,∴∴,∴在Rt中∴∴(3)取AC中点N,连接FN、BN,∵,,∴∵AF垂直CD∴∵AC中点N,∴∴∵三角形BFN中∴∴当B、F、N三点共线时BF最小,最小值为.【点睛】本题考查等腰直角三角形的常用辅助线以及直角三角形斜边上的中线,解题的关键是根据等腰直角三角形作斜边垂线或者构造“手拉手模型”.
相关试卷
这是一份数学沪科版第24章 圆综合与测试课后测评,共32页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时训练,共26页。试卷主要包含了在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。
这是一份2021学年第24章 圆综合与测试练习,共32页。