沪科版九年级下册第24章 圆综合与测试当堂检测题
展开这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共31页。
沪科版九年级数学下册第24章圆定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
2、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是( )
A.1 B. C. D.2
3、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )
A.3 B.1 C. D.
4、如图图案中,不是中心对称图形的是( )
A. B. C. D.
5、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
A.相交 B.相切
C.相离 D.不确定
6、的边经过圆心,与圆相切于点,若,则的大小等于( )
A. B. C. D.
7、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )
A.平移 B.翻折 C.旋转 D.以上三种都不对
8、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为( )
A.25° B.80° C.130° D.100°
9、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
10、点P(-3,1)关于原点对称的点的坐标是( )
A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,
问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.
2、平面直角坐标系中,,,A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90°得到AB,当BK取最小值时,点B的坐标为_________.
3、一块直角三角板的30°角的顶点A落在上,两边分别交于B、C两点,若弦BC长为4,则的半径为______.
4、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.
5、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.
三、解答题(5小题,每小题10分,共计50分)
1、如图,AB是⊙O的直径,弦CD⊥AB于点E,AM是△ACD的外角∠DAF的平分线.
(1)求证:AM是⊙O的切线;
(2)连接CO并延长交AM于点N,若⊙O的半径为2,∠ANC = 30°,求CD的长.
2、在所给的的正方形网格中,按下列要求操作:(单位正方形的边长为1)
(1)请在第二象限内的格点上找一点,使是以为底的等腰三角形,且腰长是无理数,求点的坐标;
(2)画出以点为中心,旋转180°后的,并求的面积.
3、如图,AB是⊙O的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作O的切线交CE的延长线于点D .
(1)求证:DBDE;
(2)若AB12,BD5,求AC长.
4、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过A,B,C三点的抛物线上.
(1)求抛物线的解析式;
(2)求过A,B,C三点的圆的半径;
(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;
5、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接.
(1)如图1,当、、三点共线时,连接,若,求的长;
(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,连接、交于点.若,请直接写出的值.
-参考答案-
一、单选题
1、B
【分析】
根据中心对称图形与轴对称图形的定义解答即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,不符合题意;
B既是中心对称图形又是轴对称图形,符合题意;
C. 是轴对称图形,不是中心对称图形,不符合题意;
D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
故选B.
【点睛】
本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
2、B
【分析】
利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用,求出BE,根据垂径定理求出BD即可得到答案.
【详解】
解: 在Rt中,,
∴BC=3,,
连接CD,过点C作CE⊥AB于E,
∵,
∴,
解得,
∵CB=CD,CE⊥AB,
∴,
∴,
故选:B.
【点睛】
此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.
3、D
【分析】
根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.
【详解】
解:如图,设与相交于点,
,,
,
旋转,
,
是等边三角形,
,,
,
,
,
,
,
阴影部分的面积为
故选D
【点睛】
本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.
4、C
【分析】
根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.
【详解】
解:A、是中心对称图形,故A选项不合题意;
B、是中心对称图形,故B选项不合题意;
C、不是中心对称图形,故C选项符合题意;
D、是中心对称图形,故D选项不合题意;
故选:C.
【点睛】
本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.
5、B
【分析】
根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
【详解】
解:连接,
,点O为AB中点.
CO为⊙C的半径,
是的切线,
⊙C 与AB的位置关系是相切
故选B
【点睛】
本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
6、A
【分析】
连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
【详解】
解:连接,
,
,
与圆相切于点,
,
,
故选:A.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
7、C
【详解】
解:根据图形可知,这种图形的运动是旋转而得到的,
故选:C.
【点睛】
本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.
8、D
【分析】
根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.
【详解】
解:∵四边形ABCD内接于⊙O,
∴∠B+∠ADC=180°,
∵∠ADC=130°,
∴∠B=50°,
由圆周角定理得,∠AOC=2∠B=100°,
故选:D.
【点睛】
本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
9、C
【详解】
解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;
选项B不是轴对称图形,是中心对称图形,故B不符合题意;
选项C既是轴对称图形,也是中心对称图形,故C符合题意;
选项D是轴对称图形,不是中心对称图形,故D不符合题意;
故选C
【点睛】
本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.
10、C
【分析】
据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.
【详解】
解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).
故选:C.
【点睛】
本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.
二、填空题
1、
【分析】
如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.
【详解】
解:如图,
∵四边形CDEF为正方形,
∴∠D=90°,CD=DE,
∴CE是直径,∠ECD=45°,
根据题意得:AB=2.5, ,
∴ ,
∴ ,
即此斛底面的正方形的边长为 尺.
故答案为:
【点睛】
本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.
2、
【分析】
如图,作BH⊥x轴于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,作KM⊥EF于M,根据垂线段最短可知,当点B与点M重合时,BK的值最小,利用等腰直角三角形的性质可得M的坐标,从而可得答案.
【详解】
解:如图,作BH⊥x轴于H.
∵C(0,4),K(2,0),
∴OC=4,OK=2,
∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,
∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,
∴∠ACO=∠BAH,
∴△ACO≌△BAH(AAS),
∴BH=OA=m,AH=OC=4,
∴B(m+4,m),
令x=m+4,y=m,
∴y=x﹣4,
∴点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,
则
作KM⊥EF于M,过作于 则
根据垂线段最短可知,当点B与点M重合时,BK的值最小,此时B(3,﹣1),
故答案为:(3,﹣1)
【点睛】
本题考查坐标与图形的变化﹣旋转,全等三角形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是正确寻找点B的运动轨迹,学会利用垂线段最短解决最短问题.
3、4
【分析】
连接OB、OC,由题意易得∠BOC=60°,则有△BOC是等边三角形,然后问题可求解.
【详解】
连接OB、OC,如图所示:
∵∠A=30°,
∴∠BOC=60°,
∵OB=OC,
∴△BOC是等边三角形,
∵,
∴,即⊙O的半径为4.
故答案为:4.
【点睛】
本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.
4、相切或相交
【详解】
首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.
【分析】
解:∵x2﹣5x+6=0,
(x﹣2)(x﹣3)=0,
解得:x1=2,x2=3,
∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,
∴当半径为2时,直线l与圆O的的位置关系是相切,
当半径为3时,直线l与圆O的的位置关系是相交,
综上所述,直线l与圆O的的位置关系是相切或相交.
故答案为:相切或相交.
【点睛】
本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.
5、六
【分析】
由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.
【详解】
解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:
∵半径与边长相等,
∴这个三角形是等边三角形,
∴正多边形的边数:360°÷60°=6,
∴这个正多边形是正六边形
故答案为:六.
【点睛】
本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.
三、解答题
1、
(1)见解析
(2)CD=2
【分析】
(1)由题意易得BC=BD,∠DAM=∠DAF,则有∠CAB=∠DAB,进而可得∠BAM=90°,然后问题可求证;
(2)由题意易得CD//AM,∠ANC=∠OCE=30°,然后可得OE=1,CE=,进而问题可求解.
(1)
证明:∵AB是⊙O的直径,弦CD⊥AB于点E
∴BC=BD
∴∠CAB=∠DAB
∵AM是∠DAF的平分线
∴∠DAM=∠DAF
∵∠CAD+∠DAF=180°
∴∠DAB+∠DAM=90°
即∠BAM=90°,AB⊥AM
∴AM是⊙O的切线
(2)
解:∵AB⊥CD,AB⊥AM
∴CD//AM
∴∠ANC=∠OCE=30°
在Rt△OCE中,OC=2
∴OE=1,CE=
∵AB是⊙O的直径,弦CD⊥AB于点E
∴CD=2CE=2.
【点睛】
本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键.
2、
(1)图见解析,点的坐标为
(2)图见解析,4
【分析】
(1)根据题意,腰长为无理数且为以AB为底的等腰三角形,只在第二象限,作图即可确定点,然后写出点的坐标即可;
(2)现确定旋转后的点,然后依次连接即可,根据旋转前后三角形的面积不变,利用表格及勾股定理确定三角形的底和高,即可得出面积.
(1)
解:如图所示,点的坐标为;
,为无理数,符合题意;
(2)
如图所示:点的坐标,点的坐标为,
∵旋转180°后的的面积等于的面积,
,
∴,
∴的面积为4.
【点睛】
题目主要考查等腰三角形的定义及旋转图形的作法,理解题意,熟练掌握在坐标系中旋转图形的作法是解题关键.
3、(1)见解析;(2)
【分析】
(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;
(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.
【详解】
(1)如图,
∵DC⊥OA,
∴∠1+∠3=90°,
∵BD为切线,
∴OB⊥BD,
∴∠2+∠5=90°,
∵OA=OB,
∴∠1=∠2,
∵∠3=∠4,
∴∠4=∠5,
在△DEB中,∠4=∠5,
∴DE=DB.
(2)如图,作DF⊥AB于F,
连接OE,∵DB=DE,
∴EF=BE=3,
在Rt△DEF中,EF=3,DE=BD=5,
∴DF=
∴sin∠DEF== ,
∵∠AOE,,
∴∠AOE=∠DEF,
∴在Rt△AOE中,sin∠AOE= ,
∵AE=6,
∴AO=.
【点睛】
本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.
4、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5).
【分析】
(1)3=OC=OA=3OB,故点A、B、C的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;
(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;
(3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.
【详解】
解:(1)令x=0,则y=3,
则点A的坐标为(3,0),
根据题意得:OC=3=OA=3OB,
故点B、C的坐标分别为:(-1,0)、(3,0),
则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),
把(3,0)代入得-3a=3,
解得:a=-1,
故抛物线的表达式为:y=-x2+2x+3;
(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),
则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),
则圆的半径为:;
(3)过点A、C分别作直线AC的垂线,交抛物线分别为P、P1,
设点P(x,-x2+2x+3),过点P作PQ⊥轴于点Q,
∵OA =OC,∠PAC=90°,
∴∠ACO=∠OAC=45°,
∵∠PAC=90°,
∴∠PAQ=45°,
∴△PAQ 是等腰直角三角形,
∴PQ=AQ=x,
∴AQ+AO=x+3=-x2+2x+3,
解得:(舍去),
∴点P(1,4);
设点P1(m,-m2+2m+3),过点P1作P1D⊥轴于点D,
同理得△P1CD是等腰直角三角形,且点P1在第三象限,即m<0,
∴P1D=CD=m2-2m-3,DO=-m,
∴DO+OC= P1D,即-m+3= m2-2m-3,
解得:(舍去),
∴点P(-2,-5);
综上,点P(1,4)或(-2,-5).
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏.
5、(1);(2);证明见解析;(3)
【分析】
(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,,,勾股定理即可求解;
(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;
(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值
【详解】
(1)过点作于点,如图
将绕点顺时针旋转120°,得到,
是等边三角形
,
,
在中,,
(2)如图,延长至,使得,连接,过点作,交于点,
点是的中点
又
四边形是平行四边形
,
将绕点顺时针旋转120°,得到,
是等边三角形
,,
是等边三角形
设,则,
,
,
是等边三角形
,
即
(3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,
四点共圆
由(2)可知,
将绕点顺时针旋转120°,得到,
是的中点,
是的中位线
是等腰直角三角形
四边形是矩形
,
设
在中,
,
在中,
在中
【点睛】
本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试综合训练题,共25页。
这是一份沪科版九年级下册第24章 圆综合与测试习题,共28页。试卷主要包含了等边三角形等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试课后练习题,共33页。试卷主要包含了将一把直尺,如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。