数学九年级下册第24章 圆综合与测试巩固练习
展开
这是一份数学九年级下册第24章 圆综合与测试巩固练习,共31页。
沪科版九年级数学下册第24章圆课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为( )A.5 B. C. D.2、如图,CD是的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.(2)作直线GH交AB于点E.(3)在直线GH上截取.(4)以点F为圆心,AF长为半径画圆交CD于点P.则下列说法错误的是( ) A. B. C. D.3、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )A.相交 B.相切C.相离 D.不确定4、如图,A,B,C是正方形网格中的三个格点,则是( )A.优弧 B.劣弧 C.半圆 D.无法判断5、若的圆心角所对的弧长是,则此弧所在圆的半径为( )A.1 B.2 C.3 D.46、在半径为6cm的圆中,的圆心角所对弧的弧长是( )A.cm B.cm C.cm D.cm7、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为( ) A.70° B.50° C.20° D.40°8、下列四个图案中,是中心对称图形的是( )A. B.C. D.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A.3 B.1 C. D.10、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,,是内的一个动点,满足.若,,则长的最小值为_______.2、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.3、如图,在⊙O中,∠BOC=80°,则∠A=___________°.4、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.5、如图,正六边形ABCDEF内接于⊙O,若⊙O的周长为8π,则正六边形的边长为________. 三、解答题(5小题,每小题10分,共计50分)1、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转过程中扫过的面积.2、问题:如图,是的直径,点在内,请仅用无刻度的直尺,作出中边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长交于点,延长交于点;②分别连接,并延长相交于点;③连接并延长交于点.所以线段即为中边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵是的直径,点,在上,∴________°.(______)(填推理的依据)∴,.∴,________是的两条高线.∵,所在直线交于点,∴直线也是的高所在直线.∴是中边上的高.3、已知:如图,△ABC为锐角三角形,AB=AC 求作:一点P,使得∠APC=∠BAC作法:①以点A为圆心, AB长为半径画圆;②以点B为圆心,BC长为半径画弧,交⊙A于点C,D两点;③连接DA并延长交⊙A于点P点P即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PC,BD∵AB=AC,∴点C在⊙A上∵BC=BD,∴∠_________=∠_________∴∠BAC=∠CAD ∵点D,P在⊙A上,∴∠CPD=∠CAD(______________________) (填推理的依据)∴∠APC=∠BAC4、如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C.(1)求证:CD是⊙O的切线.(2)若,求阴影部分的面积.5、阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点.易证得.大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、、三点共线,,进而可证明,故. 任务:如图3,在四边形中,,,,以为顶点的,、与、边分别交于、两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由. -参考答案-一、单选题1、D【分析】连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.【详解】解:连接OF,OE,OG,∵AB、BC、CD分别与相切,∴,,,且,∴OB平分,OC平分,∴,,∵,∴,∴,∴,,∴,∴,故选:D.【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.2、C【分析】连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.【详解】解:连接AF、BF,由作法可知,FE垂直平分AB,∴,故A正确;∵CD是的高,∴,故B正确;∵,,∴,故C错误;∵,∴∠AFE=45°,同理可得∠BFE=45°,∴∠AFB=90°,,故D正确;故选:C.【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.3、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系【详解】解:连接,,点O为AB中点.CO为⊙C的半径,是的切线,⊙C 与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.4、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.5、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r,则周长为2πr,120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键.6、C【分析】直接根据题意及弧长公式可直接进行求解.【详解】解:由题意得:的圆心角所对弧的弧长是;故选C.【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.7、D【分析】首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.【详解】解:连接OA,OB,∵PA,PB为⊙O的切线,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故选:D.【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.8、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.9、D【分析】根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设与相交于点,,,,旋转,,是等边三角形,,,,,,,,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.10、A【分析】设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当在上时,过作于 而 当在上时,延长交于点 过作于 同理: 则为等边三角形, 当在上时,连接 由正六边形的性质可得: 由正六边形的对称性可得: 而 由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.二、填空题1、2【分析】取AC中点O,由勾股定理的逆定理可知∠ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,由此求解即可.【详解】解:如图所示,取AC中点O,∵,即,∴∠ADC=90°,∴点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,∵,,∠ACB=90°,∴,∴,∴,∴,故答案为:2.【点睛】本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹.2、①②④【分析】连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.【详解】解:连接OM,∵PE为的切线,∴,∵,∴,∴,∵,,∴,即AM平分,故①正确;∵AB为的直径,∴,∵,,∴,∴,∴,故②正确;∵,∴,∵,∴,∴的长为,故③错误;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,设,则,∴,在中,,∴,∴,由①可得,,故④正确,故答案为:①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.3、40°度【分析】直接根据圆周角定理即可得出结论.【详解】解:与是同弧所对的圆心角与圆周角,,.故答案为:.【点睛】本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、【分析】如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可.【详解】解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,则OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即该球在大圆内滑行的路径MN的长度为cm,故答案为:.【点睛】本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键.5、4【分析】由周长公式可得⊙O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长.【详解】∵⊙O的周长为8π∴⊙O半径为4∵正六边形ABCDEF内接于⊙O∴正六边形ABCDEF中心角为∴正六边形ABCDEF为6个边长为4的正三角形组成的∴正六边形ABCDEF边长为4.故答案为:4.【点睛】本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键.三、解答题1、(1)作图见解析,、;(2)【分析】(1)将绕点A顺时针旋转90°得,根据点A、B、C坐标,即可确定出点、的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案.【详解】(1)将绕点A顺时针旋转90°得如图所示:∴、;(2)由图可知:,∴线段AB在旋转过程中扫过的面积为.【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键.2、(1)见详解;(2)90,直径所对的圆周角是直角,BD.【分析】(1)根据作图步骤作出图形即可;(2)根据题意填空,即可求解.【详解】解:(1)如图,CH为△ABC中AB边上的高;(2)证明:∵是的直径,点,在上,∴___90_°.(__直径所对的圆周角是直角_)(填推理的依据)∴,.∴,_BD__是的两条高线.∵,所在直线交于点,∴直线也是的高所在直线.∴是中边上的高.故答案为:90,直径所对的圆周角是直角,BD.【点睛】本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键.3、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【分析】(1)根据按步骤作图即可;(2)根据圆周角定理进行证明即可【详解】解:(1)如图所示,(2)证明:连接PC,BD∵AB=AC,∴点C在⊙A上∵BC=BD,∴∠BAC=∠BAD∴∠BAC=∠CAD ∵点D,P在⊙A上,∴∠CPD=∠CAD(圆周角定理) (填推理的依据)∴∠APC=∠BAC故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半【点睛】本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.4、(1)见详解;(2)【分析】(1)连接OD,由题意易得,则有△ODB是等边三角形,然后可得△AEO也为等边三角形,进而可得OD∥AC,最后问题可求证;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圆O的半径,进而可得扇形OED和△OED的面积,则有弓形ED的面积,最后问题可求解.【详解】(1)证明:连接OD,如图所示:∵四边形BDEO是平行四边形,∴,∴△ODB是等边三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也为等边三角形,∴∠EAO=∠DOB=60°,∴AE∥OD,∴∠ODC+∠C=180°,∵CD⊥AE,∴∠C=90°,∴∠ODC=90°,∵OD是圆O的半径,∴CD是⊙O的切线.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO为等边三角形, ∴ED=OE=AE,∵CD⊥AE,∠CED=60°,∴∠CDE=30°,∴,∵,∴,∴,设△OED的高为h,∴,∴,∴.【点睛】本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键.5、成立,证明见解析【分析】根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF .【详解】解:成立.证明:将绕点顺时针旋转,得到,,,,,,,、、三点共线,.,,,,.【点睛】本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.
相关试卷
这是一份沪科版第24章 圆综合与测试课时练习,共27页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共31页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共28页。