年终活动
搜索
    上传资料 赚现金

    2022年必考点解析沪科版九年级数学下册第24章圆专项攻克试题

    立即下载
    加入资料篮
    2022年必考点解析沪科版九年级数学下册第24章圆专项攻克试题第1页
    2022年必考点解析沪科版九年级数学下册第24章圆专项攻克试题第2页
    2022年必考点解析沪科版九年级数学下册第24章圆专项攻克试题第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试练习

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试练习,共27页。试卷主要包含了在圆内接四边形ABCD中,∠A,如图,是的直径,等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(    A.3 B.1 C. D.2、下列四个图案中,是中心对称图形的是(  )A. B.C. D.3、下列图形中,是中心对称图形的是(    A. B.C. D.4、下列各点中,关于原点对称的两个点是(  )A.(﹣5,0)与(0,5) B.(0,2)与(2,0)C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)5、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )A.5 B. C. D.6、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为(      A.140° B.100° C.80° D.40°7、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为(    )cm.A.3π B.6π C.12π D.18π8、如图,的直径,上的两点,若,则    A.15° B.20° C.25° D.30°9、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使AGH三点刚好在金属框上,则该金属框的半径是(    A. B. C. D.10、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为(   A.3 B.2 C.1 D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在⊙O中,ABC是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.2、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.3、如图,PMPN分别与⊙O相切于AB两点,C为⊙O上异于AB的一点,连接ACBC.若∠P=58°,则∠ACB的大小是___________.4、已知OI分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.5、如图,在⊙O中,∠BOC=80°,则∠A=___________°.三、解答题(5小题,每小题10分,共计50分)1、如图,将一个直径AB等于12厘米的半圆绕着点A逆时针旋转60°后,点B落到了点C的位置,半圆扫过部分的图形如阴影部分所示.(1)阴影部分的周长;(2)阴影部分的面积.(结果保留π2、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PBAB,∠PBA=∠C(1)求证:PB是⊙O的切线;(2)连接OP,若OPBC,且OP=8,⊙O的半径为3,求BC的长.3、在中,,过点ABC的垂线AD,垂足为DE为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G(1)如图,当点E在线段CD上时,①依题意补全图形,并直接写出BCCF的位置关系;②求证:点GBF的中点.(2)直接写出AEBEAG之间的数量关系.4、问题:如图,的直径,点内,请仅用无刻度的直尺,作出边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长于点,延长于点②分别连接并延长相交于点③连接并延长交于点所以线段即为边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵的直径,点上,________°.(______)(填推理的依据),________是的两条高线.所在直线交于点∴直线也是的高所在直线.边上的高.5、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D(1)弦AB的长为          (2)求劣弧的长. -参考答案-一、单选题1、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设相交于点旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.2、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.3、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.4、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.5、D【分析】连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.【详解】解:连接OFOEOGAB、BC、CD分别与相切,,且OB平分OC平分故选:D.【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.6、C【分析】,进而求解的值.【详解】解:由题意知故选C.【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.7、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8、C【分析】根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.【详解】解:∵∠BOC=130°,∴∠BDC=BOC=65°,AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=90°-65°=25°,故选:C.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.9、A【分析】如图,记过AGH三点的圆为的垂直平分线的交点,的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过AGH三点的圆为的垂直平分线的交点, 的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 AB=2,CD=3,EF=5,结合正方形的性质可得: 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过AGH三点的圆的圆心是解本题的关键.10、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.【详解】解:连接OC,如图AB 为⊙O 的直径,CDAB,垂足为点 ECD=8,故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出二、填空题1、35°【分析】利用圆周角定理求出所求角度数即可.【详解】解:都对,且故答案为:【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.2、【分析】如图连接并延长,过点交于点,由题意可知为等边三角形,,在;在计算求解即可.【详解】解:如图连接并延长,过点交于点 由题意可知为等边三角形  故答案为:【点睛】本题考查了旋转的性质,等边三角形,勾股定理,含的直角三角形等知识.解题的关键在于做辅助线构造直角三角形.3、【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PMPN分别与⊙O相切于AB两点, 故答案为:【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.4、140【分析】的外接圆,根据三角形内心的性质可得:,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.【详解】解:如图所示,作的外接圆,∵点I的内心,BICI分别平分∵点O的外心,故答案为:140.【点睛】题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.5、40°度【分析】直接根据圆周角定理即可得出结论.【详解】解:是同弧所对的圆心角与圆周角,故答案为:【点睛】本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.三、解答题1、(1)16π(2)24π【分析】(1)由阴影部分的周长=两个半圆弧的长度+弧BC的长,利用弧长公式可求解;(2)由面积的和差关系可求解.(1)解:阴影部分的周长=2××2π×6+=16π;(2)解:∵阴影部分的面积=S半圆+S扇形BACS半圆S扇形BAC∴阴影部分的面积==24π.答:阴影部分的周长为16π,阴影部分的面积为24π.【点睛】本题考查了扇形的弧长公式和面积公式,如果扇形的圆心角是n°,扇形的半径为r,则扇形的弧长l的计算公式为:,扇形的面积公式:2、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长.(1)证明:连接,如图所示:的直径,的切线;(2)解:的半径为【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.3、(1)①BCCF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.【分析】(1)①如图所示,BCCF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;②根据ADBCBCCF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;(2)2AE2=4AG2+BE2,延长BACF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出即可.【详解】解:(1)①如图所示,BCCF∵将线段AE逆时针旋转90°得到线段AFAE=AF,∠EAF=90°,∴∠EAC+∠CAF=90°,∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,∴∠BAE=∠CAF在△BAE和△CAF中,∴△BAE≌△CAF(SAS),∴∠ABE=∠ACF=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,BCCF②∵ADBCBCCFAD∥CF∴∠BDG=∠BCF=90°,∠BGD=∠BFC∴△BDG∽△BCFADBCBD=DC=BG=GF;(2)2AE2=4AG2+BE2.延长BACF延长线于HADBCAB=ACAD平分∠BAC∴∠BAD=∠CAD=BG=GFAG∥HF∴∠BAG=∠H=45°,∠AGB=∠HFB∴△BAG∽△BHFHF=2AG∵∠ACE=45°,∴∠ACE =∠H∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,∴∠EAC=∠FAH在△AEC和△AFH中,∴△AEC≌△AFH(AAS),EC=FH=2AG在Rt△AEF中,根据勾股定理在Rt△ECF中,【点睛】本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.4、(1)见详解;(2)90,直径所对的圆周角是直角,BD【分析】(1)根据作图步骤作出图形即可;(2)根据题意填空,即可求解.【详解】解:(1)如图,CH为△ABC中AB边上的高;(2)证明:∵的直径,点上,___90_°.(__直径所对的圆周角是直角_)(填推理的依据),_BD__是的两条高线.所在直线交于点∴直线也是的高所在直线.边上的高.故答案为:90,直径所对的圆周角是直角,BD【点睛】本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键.5、(1),(2)【分析】(1)根据弦AB垂直平分半径OCOC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×(2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.【详解】解:(1)∵弦AB垂直平分半径OCOC=OB=10cm,OD=CD=,∠ODB=90°,AB=2BD=2×故答案为(2)cos∠DOB=∴∠DOB=60°,的度数为2×60°=120°,【点睛】本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试测试题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试测试题,共32页。试卷主要包含了将一把直尺等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课堂检测:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课堂检测,共32页。试卷主要包含了下列图形中,是中心对称图形的是,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试巩固练习:

    这是一份沪科版九年级下册第24章 圆综合与测试巩固练习,共30页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map