年终活动
搜索
    上传资料 赚现金

    2022年最新强化训练沪科版九年级数学下册第24章圆同步训练试题(含解析)

    立即下载
    加入资料篮
    2022年最新强化训练沪科版九年级数学下册第24章圆同步训练试题(含解析)第1页
    2022年最新强化训练沪科版九年级数学下册第24章圆同步训练试题(含解析)第2页
    2022年最新强化训练沪科版九年级数学下册第24章圆同步训练试题(含解析)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试精练

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试精练,共35页。试卷主要包含了将一把直尺,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆同步训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )

    A.22.5° B.45° C.90° D.67.5°
    2、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为( )

    A.3 B. C. D.
    3、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )

    A. B. C.3 D.
    4、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    5、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )

    A.105° B.120° C.135° D.150°
    6、下列图形中,既是中心对称图形也是轴对称图形的是( )
    A. B. C. D.
    7、下列图形中,是中心对称图形的是( )
    A. B.
    C. D.
    8、如图图案中,不是中心对称图形的是( )
    A. B. C. D.
    9、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是(  )

    A..等腰三角形 B.等边三角形
    C..直角三角形 D..等腰直角三角形
    10、如图,是的直径,、是上的两点,若,则( )

    A.15° B.20° C.25° D.30°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,点D为边长是的等边△ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持∠ADB=120°不变,则四边形ADBC的面积S的最大值是 ____.

    2、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.

    3、如图,在中,,是内的一个动点,满足.若,,则长的最小值为_______.

    4、如图,在中,,,.绕点B顺时针方向旋转45°得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为______.(结果保留)

    5、点(2,-3)关于原点的对称点的坐标为_____.
    三、解答题(5小题,每小题10分,共计50分)
    1、在中,,,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.

    (1)如图,当点E在线段CD上时,
    ①依题意补全图形,并直接写出BC与CF的位置关系;
    ②求证:点G为BF的中点.
    (2)直接写出AE,BE,AG之间的数量关系.
    2、如图,抛物线y=-+x+2与x轴负半轴交于点A,与y轴交于点B.
    (1)求A,B两点的坐标;
    (2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;
    (3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.
    ①求点F的坐标;
    ②直接写出点P的坐标.

    3、在平面直角坐标系xOy中,的半径为2.点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”.
    (1)如图,点A,B,C,D横、纵坐标都是整数.在点B,C,D中,与点A组成的“成对关联点”的点是______;

    (2)点在第一象限,点F与点E关于x轴对称.若点E,F是的“成对关联点”,直接写出t的取值范围;
    (3)点G在y轴上.若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围.
    4、如图,在中,,O为AC上一点,以点O为圆心,OC为半径的圆恰好与AB相切,切点为D,与AC的另一个交点为E.

    (1)求证:BO平分;
    (2)若,,求BO的长.
    5、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点A作AD∥OC,交BC的延长线于D.

    (1)求证:AD是⊙O的切线;
    (2)若⊙O的半径为2,∠OCB=75°,求△ABC边AB的长.

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据同弧所对的圆周角是圆心角的一半即可得.
    【详解】
    解:∵,
    ∴,
    ∴,
    故选:B.
    【点睛】
    题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.
    2、A
    【分析】
    分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.
    【详解】
    解:连接BO,并延长交⊙O于D,连结DC,
    ∵∠A=30°,
    ∴∠D=∠A=30°,
    ∵BD为直径,
    ∴∠BCD=90°,
    在Rt△BCD中,BC=3,∠D=30°,
    ∴BD=2BC=6,
    ∴OB=3.
    故选A.

    【点睛】
    本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.
    3、D
    【分析】
    连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得
    【详解】
    如图,连接,





    是直角三角形,且




    是等边三角形

    是直径,


    故选D
    【点睛】
    本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.
    4、D
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.

    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    5、B
    【分析】
    由题意易得,然后根据三角形外角的性质可求解.
    【详解】
    解:由旋转的性质可得:,
    ∴;
    故选B.
    【点睛】
    本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
    6、A
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是中心对称图形,不是轴对称图形,故此选项不符合题意;
    D、是中心对称图形,不是轴对称图形,故此选项不符合题意.
    故选:A.
    【点睛】
    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    7、C
    【分析】
    根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.
    【详解】
    A、不是中心对称图形,不符合题意;
    B、不是中心对称图形,不符合题意;
    C、是中心对称图形,符合题意;
    D、不是中心对称图形,不符合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.
    8、C
    【分析】
    根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.
    【详解】
    解:A、是中心对称图形,故A选项不合题意;
    B、是中心对称图形,故B选项不合题意;
    C、不是中心对称图形,故C选项符合题意;
    D、是中心对称图形,故D选项不合题意;
    故选:C.
    【点睛】
    本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.
    9、D
    【分析】
    根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.
    【详解】
    解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,
    ∴∠ECF=90°,CE=CF,
    ∴△CEF是等腰直角三角形,
    故选:D.
    【点睛】
    本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.
    10、C
    【分析】
    根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.
    【详解】
    解:∵∠BOC=130°,
    ∴∠BDC=∠BOC=65°,
    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴∠ADC=90°-65°=25°,
    故选:C.
    【点睛】
    本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.
    二、填空题
    1、
    【分析】
    根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可.
    【详解】
    解:根据题意作等边三角形的外接圆,

    D在运动过程中始终保持∠ADB=120°不变,
    在圆上运动,
    当点运动到的中点时,四边形ADBC的面积S的最大值,
    过点作的垂线交于点,如图:




    在中,

    解得:,

    过点作的垂线交于,





    故答案是:.
    【点睛】
    本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质.
    2、
    【分析】
    连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.
    【详解】
    解:如图所示,连接OB,交AC于点D,

    ∵四边形OABC为平行四边形,,
    ∴四边形OABC为菱形,
    ∴,,,
    ∵,
    ∴为等边三角形,
    ∴,
    ∴,
    在中,设,则,
    ∴,
    即,
    解得:或(舍去),
    ∴的长为:,
    故答案为:.
    【点睛】
    题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.
    3、2
    【分析】
    取AC中点O,由勾股定理的逆定理可知∠ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,由此求解即可.
    【详解】
    解:如图所示,取AC中点O,
    ∵,即,
    ∴∠ADC=90°,
    ∴点D在以O为圆心,以AC为直径的圆上,
    作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,
    ∵,,∠ACB=90°,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:2.

    【点睛】
    本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹.
    4、##
    【分析】
    设与AC相交于点D,过点D作,垂足为点E,根据勾股定理逆定理可得为直角三角形,根据三边关系可得,根据题意及等角对等边得出,在中,利用正弦函数可得,结合图形,利用扇形面积公式及三角形面积公式求解即可得.
    【详解】
    解:设与AC相交于点D,过点D作,垂足为点E,

    ∵,,,
    ∴,
    ∴为直角三角形,
    ∴,
    ∵绕点B顺时针方向旋转45°得到,
    ∴,
    ∴,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,




    故答案为:.
    【点睛】
    题目主要考查勾股定理逆定理,旋转的性质,等角对等边的性质,正切函数,扇形面积等,理解题意,结合图形,综合运用这些知识点是解题关键.
    5、 (-2,3)
    【分析】
    根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解.
    【详解】
    点(2,-3)关于原点的对称点的坐标是(-2,3).
    故答案为: (-2,3).
    【点睛】
    本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系.
    三、解答题
    1、(1)①BC⊥CF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.
    【分析】
    (1)①如图所示,BC⊥CF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;
    ②根据AD⊥BC,BC⊥CF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;
    (2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.
    【详解】
    解:(1)①如图所示,BC⊥CF.
    ∵将线段AE逆时针旋转90°得到线段AF,
    ∴AE=AF,∠EAF=90°,
    ∴∠EAC+∠CAF=90°,
    ∵,,
    ∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,
    ∴∠BAE=∠CAF,
    在△BAE和△CAF中,

    ∴△BAE≌△CAF(SAS),
    ∴∠ABE=∠ACF=45°,
    ∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
    ∴BC⊥CF;

    ②∵AD⊥BC,BC⊥CF.
    ∴AD∥CF,
    ∴∠BDG=∠BCF=90°,∠BGD=∠BFC,
    ∴△BDG∽△BCF,
    ∴,
    ∵,AD⊥BC,
    ∴BD=DC=,
    ∴,
    ∴,
    ∴,
    ∴BG=GF;
    (2)2AE2=4AG2+BE2.延长BA交CF延长线于H,
    ∵AD⊥BC,AB=AC,
    ∴AD平分∠BAC,
    ∴∠BAD=∠CAD=,
    ∵BG=GF,AG∥HF,
    ∴∠BAG=∠H=45°,∠AGB=∠HFB,
    ∴△BAG∽△BHF,
    ∴,
    ∴HF=2AG,
    ∵∠ACE=45°,
    ∴∠ACE =∠H,
    ∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,
    ∴∠EAC=∠FAH,
    在△AEC和△AFH中,

    ∴△AEC≌△AFH(AAS),
    ∴EC=FH=2AG,
    在Rt△AEF中,根据勾股定理,
    在Rt△ECF中,即.

    【点睛】
    本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.
    2、(1)A(-1,0),B(0,2);(2)点C的坐标(,);(3)①求点F的坐标(1,2);②点P的坐标(,)
    【分析】
    (1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;
    (2)设C的坐标为(x,-+x+2),根据AC=BC,得到,令t=-+x,解方程即可;
    (3)①根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,根据B,E都在抛物线上,则B,E是对称点,从而确定点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;
    ②根据BE=3,∠BPE=90°,PB=PE,确定P到BE的距离,即可写出点P的坐标.
    【详解】
    (1)令x=0,得y=2,
    ∴点B的坐标为B(0,2);
    令y=0,得-+x+2=0,
    解得
    ∵点A在x轴的负半轴;
    ∴A点的坐标(-1,0);
    (2)设C的坐标为(x,-+x+2),
    ∵AC=BC,A(-1,0),B(0,2),
    ∴,
    ∵A(-1,0),B(0,2),
    ∴,
    即,
    设t=-+x,
    ∴,
    ∴,
    ∴,
    ∴,
    整理,得,
    解得
    ∵点C在y轴右侧的抛物线上,
    ∴,
    此时y=,
    ∴点C的坐标(,);
    (3)①如图,根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,

    ∵B,E都在抛物线上,
    ∴B,E是对称点,
    ∴点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,
    ∵抛物线的对称轴为直线x=,B(0,2),
    ∴点E(3,2),BE=3,
    ∵EF=BO=2,
    ∴BF=1,
    ∴点F的坐标为(1,2);
    ②如图,设抛物线的对称轴与BE交于点M,交x轴与点N,
    ∵BE=3,
    ∴BM=,
    ∵∠BPE=90°,PB=PE,
    ∴PM=BM=,
    ∴PM=BM=,
    ∴PN=2-=,
    ∴点P的坐标为(,).
    【点睛】
    本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键.
    3、(1)B和C;(2);(3)
    【分析】
    (1)根据图形可确定与点A组成的“成对关联点”的点;
    (2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;
    (3)分类讨论:点G在上,点G在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围.
    【详解】
    (1)如图所示:

    在点B,C,D中,与点A组成的“成对关联点”的点是B和C,
    故答案为:B和C;
    (2)∵
    ∴在直线上,
    ∵点F与点E关于x轴对称,
    ∴在直线,
    如下图所示:

    直线和与分别交于点,,与直线分别交于,,
    由题可得:,
    当点E在线段上时,有的“成对关联点”
    ∴;
    (3)

    如图,当点G在上时,轴,在上不存在这样的矩形;

    如图,当点G在下方时,也不存在这样的矩形;

    如图,当点G在上方时,存在这样的矩形GMNH,
    当恰好只能构成一个矩形时,
    设,直线与y轴相交于点K,
    则,,,,,
    ∴,即,
    ∴,
    解得:或(舍),
    综上:当时,点G,H是的“成对关联点”.
    【点睛】
    本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键.
    4、(1)见解析;(2)2
    【分析】
    (1)连接OD,由与AB相切得,由HL定理证明由全等三角形的性质得,即可得证;
    (2)设的半径为,则,在中,得出关系式求出,可得出的长,在中,由正切值求出,在中,由勾股定理求出即可.
    【详解】
    (1)

    如图,连接OD,
    ∵与AB相切,
    ∴,
    在与中,

    ∴,
    ∴,
    ∴平分;
    (2)设的半径为,则,
    在中,,,
    ∴,
    解得:,
    ∴,
    在中,,即,
    在中,.
    【点睛】
    本题考查圆与直线的位置关系,全等三角形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键.
    5、(1)见解析;(2)
    【分析】
    (1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;
    (2)连接OB,过点O作OE⊥AB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB =30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=.
    【详解】
    解:(1)如图所示,连接OA,
    ∵∠CBA=45°,
    ∴∠COA=90°,
    ∵AD∥OC,
    ∴∠OAD+∠COA=180°,
    ∴∠OAD=90°,
    又∵点A在圆O上,
    ∴AD是⊙O的切线;

    (2)连接OB,过点O作OE⊥AB,垂足为E,
    ∵∠OCB=75°,OB=OC,
    ∴∠OCB=∠OBC=75°,
    ∴∠COB=180°-∠OCB-∠OBC=30°,
    由(1)证可得∠AOC=90°,
    ∴∠AOB=120°,
    ∵OA=OB,
    ∴∠OAB=∠OBA=30°,
    又∵OE⊥AB,
    ∴AE=BE,
    在Rt△AOE中,AO=2,∠OAE=30°,
    ∴OE=AO=1,
    由勾股定理可得,,
    ∴AB=.

    【点睛】
    本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键.

    相关试卷

    沪科版第24章 圆综合与测试课时练习:

    这是一份沪科版第24章 圆综合与测试课时练习,共27页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试同步练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共31页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共28页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map