终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练沪科版九年级数学下册第24章圆专题测评试题(精选)

    立即下载
    加入资料篮
    2022年最新强化训练沪科版九年级数学下册第24章圆专题测评试题(精选)第1页
    2022年最新强化训练沪科版九年级数学下册第24章圆专题测评试题(精选)第2页
    2022年最新强化训练沪科版九年级数学下册第24章圆专题测评试题(精选)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试同步练习题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共29页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于(    A. B. C. D.2、如图,DC是⊙O的直径,弦ABCDM,则下列结论不一定成立的是(    )A.AM=BM B.CM=DM C. D.3、如图,AB的直径,的弦DC的延长线与AB的延长线相交于点P于点E,则阴影部分的面积为(    A. B. C. D.4、如图,在中,,将绕点C逆时针旋转90°得到,则的度数为(    A.105° B.120° C.135° D.150°5、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是(      A.60 B.90 C.120 D.1806、下列语句判断正确的是(  )A.等边三角形是轴对称图形,但不是中心对称图形B.等边三角形既是轴对称图形,又是中心对称图形C.等边三角形是中心对称图形,但不是轴对称图形D.等边三角形既不是轴对称图形,也不是中心对称图形7、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是(    A.  B. C.  D.8、在△ABC中,,点OAB中点.以点C为圆心,CO长为半径作⊙C,则⊙CAB的位置关系是(    A.相交 B.相切C.相离 D.不确定9、如图,AB的直径,弦CDAB于点P,则CD的长为(    A. B. C. D.810、如图,的直径,上的两点,若,则    A.15° B.20° C.25° D.30°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系xOy中,Px轴正半轴上一点.已知点的外接圆.(1)点M的纵坐标为______;(2)当最大时,点P的坐标为______.2、如图,PAPB分别与⊙O相切于AB两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°3、如果点与点B关于原点对称,那么点B的坐标是______.4、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______. 5、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD内接于⊙OAC是直径,点C是劣弧BD的中点.(1)求证:(2)若,求BD2、如图,已知弓形的长,弓高,(,并经过圆心O).(1)请利用尺规作图的方法找到圆心O(2)求弓形所在的半径的长.3、如图,已知线段,点A在线段上,且,点B为线段上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为.若旋转后MN两点重合成一点C(即构成),设(1)的周长为_______;(2)若,求x的值.4、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BCDC或其所在直线相交于点EF,连接EF(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CBDC相交时,如图1所示,请直接写出线段BEDFEF满足的数量关系;(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CBDC的延长线相交时,如图2所示,请直接写出线段BEDFEF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.5、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.已知:⊙O.求作:⊙O的内接等腰直角三角形ABC. 作法:如图,①作直径AB②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;③作直线MO交⊙O于点CD④连接ACBC所以△ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接MAMBMA=MBOA=OBMOAB的垂直平分线.AC=                 AB是直径,∴∠ACB=        (                        ) (填写推理依据) .∴△ABC是等腰直角三角形. -参考答案-一、单选题1、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.【详解】解:连接CD,如图所示:∵点DAB的中点,在Rt△ACB中,由勾股定理可得故选D.【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.2、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦ABCDCD过圆心OAM=BM即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CMDM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.3、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.【详解】解:根据题意,如图:AB的直径,OD是半径,AE=CE∴阴影CED的面积等于AED的面积,故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.4、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.5、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.故选C.【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.6、A【分析】根据等边三角形的对称性判断即可.【详解】∵等边三角形是轴对称图形,但不是中心对称图形,BCD都不符合题意;故选:A【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.7、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.不是轴对称图形,是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断的切线,进而可得⊙CAB的位置关系【详解】解:连接,,点OAB中点.CO为⊙C的半径,的切线,CAB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.9、A【分析】过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点于点,连接 AB的直径,中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.10、C【分析】根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.【详解】解:∵∠BOC=130°,∴∠BDC=BOC=65°,AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=90°-65°=25°,故选:C.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题1、5    (4,0)    【分析】(1)根据点M在线段AB的垂直平分线上求解即可;(2)点P在⊙M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可.【详解】解:(1)∵⊙M为△ABP的外接圆,∴点M在线段AB的垂直平分线上,A(0,2),B(0,8),∴点M的纵坐标为:故答案为:5;(2)过点,作⊙Mx轴相切,则点M在切点处时,最大,理由:若点x轴正半轴上异于切点P的任意一点,交⊙M于点E,连接AE,则∠AEB=∠APB∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即点P在切点处时,∠APB最大,∵⊙M经过点A(0,2)、B(0,8),∴点M在线段AB的垂直平分线上,即点M在直线y=5上,∵⊙Mx轴相切于点PMPx轴,从而MP=5,即⊙M的半径为5,AB的中点为D,连接MDAM,如上图,则MDABAD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四边形OPMD是矩形,从而OP=MD由勾股定理,得MD=OP=MD=4,∴点P的坐标为(4,0),故答案为:(4,0).【点睛】本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.2、【分析】连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB【详解】解:连接,如图,PAPB分别与⊙O相切故答案为:【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.3、【分析】关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B坐标.【详解】解:由题意知点B横坐标为;纵坐标为故答案为:【点睛】本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.4、6【分析】如图,连接OAOBOCODOEOF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OAOBOCODOEOF∵正六边形ABCDEFABBCCDDEEFFA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,的周长为的半径为正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.5、在⊙A【分析】先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.【详解】解:∵点A的坐标为(4,3),OA==5,∵半径为5,OA=r∴点O在⊙A上.故答案为:在⊙A上.【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外⇔dr;当点P在圆上⇔d=r;当点P在圆内⇔dr三、解答题1、(1)见详解;(2)【分析】(1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;(2)由题意易得,然后由(1)可知△ABD是等边三角形,进而问题可求解.【详解】(1)证明:∵AC是直径,点C是劣弧BD的中点,AC垂直平分BD(2)解:∵∴△ABD是等边三角形,【点睛】本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键.2、(1)见解析(2)10【分析】(1)作BC的垂直平分线,与直线CD的交点即为圆心;(2)连接OA,根据勾股定理列出方程即可求解.(1)解:如图所示,点O即是圆心;(2)解:连接OA,并经过圆心O解得,答:半径为10.【点睛】本题考查了垂径定理和确定圆心,解题关键是熟练作图确定圆心,利用垂径定理和勾股定理求半径.3、(1)4(2)【分析】(1)由旋转知:AM=AC=1,BN=BC,将△ABC的周长转化为MN(2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.(1)解:由旋转知:AM=AC=1,BN=BC=3-x∴△ABC的周长为:AC+AB+BC=MN=4;故答案为:4;(2)解:∵α+β=270°,∴∠CAB+∠CBA=360°-270°=90°,∴∠ACB=180°-(∠CAB+∠CBA=180°-90°=90°,AC2+BC2=AB2即12+(3-x2=x2解得【点睛】本题主要考查了旋转的性质,勾股定理等知识,证明∠ACB=90°是解题的关键.4、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为【分析】(1)延长FDG,使DG=BE,连接AG,先证△ABE≌△ADG,再证△GAF≌△EAF即可;(2)在DC上截取DH=BE,连接AH,先证△ADH≌△ABE,再证△HAFEAF即可;(3)分两种情形分别求解即可解决问题.【详解】解:(1)结论:EF=BE+DF理由:延长FDG,使DG=BE,连接AG,如图①,ABCD是正方形,AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADGAAS),AE=AG,∠DAG=∠EAB∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,AF=AF∴△GAF≌△EAFAAS),EF=GFGF=DF+DG=DF+BE即:EF=DF+BE(2)结论:EF=DF-BE理由:在DC上截取DH=BE,连接AH,如图②,AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABESAS),AH=AE,∠DAH=∠EAB∵∠EAF=∠EAB+∠BAF=45°,∴∠DAH+∠BAF=45°,∴∠HAF=45°=∠EAFAF=AF∴△HAFEAFSAS),HF=EFDF=DH+HFEF=DF-BE(3)①当MA经过BC的中点E时,同(1)作辅助线,如图:FD=x,由(1)的结论得FG=EF=2+xFC=4-xRtEFC中,(x+2)2=(4-x2+22x=EF=x+2=②当NA经过BC的中点G时,同(2)作辅助线,BE=x,由(2)的结论得EC=4+xEF=FHKBC边的中点,CK=BC=2,同理可证△ABKFCKSAS),CF=AB=4,EF=FH=CF+CD-DH=8-xRtEFC中,由勾股定理得到:(4+x2+42=(8-x2x=EF=8-=综上,线段EF的长为【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.5、(1)见解析;(2)BC,90°,直径所对的圆周角是直角【分析】(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交⊙O于点CD;连结ACBC即可;(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出∠ACB=90°即可.【详解】(1)①作直径AB②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;③作直线MO交⊙O于点CD④连接ACBC所以△ABC就是所求的等腰直角三角形.(2)证明:连接MAMBMA=MBOA=OBMOAB的垂直平分线.AC=BCAB是直径,∴∠ACB=90°(直径所对的圆周角是直角) .∴△ABC是等腰直角三角形.故答案为:BC,90°,直径所对的圆周角是直角.【点睛】本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试课后作业题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后作业题,共32页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共30页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共33页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map