终身会员
搜索
    上传资料 赚现金

    2022年最新强化训练沪科版九年级数学下册第24章圆章节训练试卷(精选含答案)

    立即下载
    加入资料篮
    2022年最新强化训练沪科版九年级数学下册第24章圆章节训练试卷(精选含答案)第1页
    2022年最新强化训练沪科版九年级数学下册第24章圆章节训练试卷(精选含答案)第2页
    2022年最新强化训练沪科版九年级数学下册第24章圆章节训练试卷(精选含答案)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试综合训练题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试综合训练题,共31页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆章节训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、在半径为6cm的圆中,的圆心角所对弧的弧长是(   

    A.cm B.cm C.cm D.cm

    2、若的圆心角所对的弧长是,则此弧所在圆的半径为(   

    A.1 B.2 C.3 D.4

    3、点P(3,﹣2)关于原点O的对称点的坐标是(  )

    A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)

    4、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为(   

    A.45° B.60° C.90° D.120°

    5、下列语句判断正确的是(  )

    A.等边三角形是轴对称图形,但不是中心对称图形

    B.等边三角形既是轴对称图形,又是中心对称图形

    C.等边三角形是中心对称图形,但不是轴对称图形

    D.等边三角形既不是轴对称图形,也不是中心对称图形

    6、如图,AB的直径,弦CDAB于点P,则CD的长为(   

    A. B. C. D.8

    7、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为(   

    A.1cm B.2cm C.3cm D.4cm

    8、如图,在中,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为(   

    A. B. C. D.

    9、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点AB的对应点分别为DE,连接AD.当点ADE在同一条直线上时,则∠BAD的大小是(  )

    A.80° B.70° C.60° D.50°

    10、下列四个图案中,是中心对称图形的是(  )

    A. B.

    C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,

    问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.

    2、如图,PAPB分别与⊙O相切于AB两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°

    3、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OBOC,若弦BC的长度为,则∠BAC=________度.

    4、如图,在平行四边形中,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留

    5、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是________

    三、解答题(5小题,每小题10分,共计50分)

    1、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠AO

    已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与AC不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC

    (1)求弦AC的长.

    (2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.

    (3)当OE=1时,求点A与点D之间的距离(直接写出答案).

    2、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D

    (1)弦AB的长为         

    (2)求劣弧的长.

    3、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D

    (1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);

    (2)在(1)所作的图中,连接CD,若CDBD,且AC=6.求劣弧的长.

    4、如图,AB是⊙O的直径,弦CDAB于点EAM是△ACD的外角∠DAF的平分线.

    (1)求证:AM是⊙O的切线;

    (2)连接CO并延长交AM于点N,若⊙O的半径为2,∠ANC = 30°,求CD的长.

    5、解题与遐想.

    如图,RtABC的内切圆与斜边AB相切于点DAD=4,BD=5.求RtABC的面积.

    王小明:这道题算出来面积刚好是20,太凑巧了吧.刚好是4×5=20,有种白算的感觉…

    赵丽华:我把4和5换成mn再算一遍,△ABC的面积总是mn!确实非常神奇了…

    数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?

    霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了.我怎么想不出来呢?

    计算验证

    (1)通过计算求出RtABC的面积.

    拼图演绎

    (2)将RtABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明.

    尺规作图

    (3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个RtABC,使它的内切圆与斜边AB相切于点D.(保留作图的痕迹,写出必要的文字说明)

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    直接根据题意及弧长公式可直接进行求解.

    【详解】

    解:由题意得:的圆心角所对弧的弧长是

    故选C.

    【点睛】

    本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.

    2、C

    【分析】

    先设半径为r,再根据弧长公式建立方程,解出r即可

    【详解】

    设半径为r

    则周长为2πr

    120°所对应的弧长为

    解得r=3

    故选C

    【点睛】

    本题考查弧长计算,牢记弧长公式是本题关键.

    3、B

    【分析】

    根据“平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.

    【详解】

    解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).

    故选:B

    【点睛】

    本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.

    4、B

    【分析】

    设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.

    【详解】

    解:设∠ADC=α,∠ABC=β

    ∵四边形ABCO是菱形,

    ∴∠ABC=∠AOC

    ADC=β

    四边形为圆的内接四边形,

    α+β=180°,

    解得:β=120°,α=60°,则∠ADC=60°,

    故选:B.

    【点睛】

    该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.

    5、A

    【分析】

    根据等边三角形的对称性判断即可.

    【详解】

    ∵等边三角形是轴对称图形,但不是中心对称图形,

    BCD都不符合题意;

    故选:A

    【点睛】

    本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.

    6、A

    【分析】

    过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.

    【详解】

    解:如图,过点于点,连接

    AB的直径,

    中,

    故选A

    【点睛】

    本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.

    7、B

    【分析】

    连接OB,过点OOCAB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.

    【详解】

    解:连接OB,过点OOCAB于点D,交⊙O于点C,如图所示:

    AB=8cm,

    BD=AB=4(cm),

    由题意得:OB=OC==5cm,

    RtOBD中,OD=(cm),

    CD=OC-OD=5-3=2(cm),

    即水的最大深度为2cm,

    故选:B.

    【点睛】

    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.

    8、B

    【分析】

    阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.

    【详解】

    解:由图可知:阴影部分的面积=扇形扇形

    由旋转性质可知:

    中,

    有勾股定理可知:

    阴影部分的面积=扇形扇形

    故选:B.

    【点睛】

    本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.

    9、A

    【分析】

    根据三角形旋转得出,根据点ADE在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.

    【详解】

    证明:∵绕点C逆时针旋转得到

    ∴∠ADC=∠DAC

    ∵点ADE在同一条直线上,

    ∴∠DAC=50°,

    ∴∠BAD=∠BAC-∠DAC=80°

    故选A.

    【点睛】

    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.

    10、A

    【分析】

    中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.

    【详解】

    解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,

    故选:A.

    【点睛】

    本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.

    二、填空题

    1、

    【分析】

    如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.

    【详解】

    解:如图,

    ∵四边形CDEF为正方形,

    ∴∠D=90°,CD=DE

    CE是直径,∠ECD=45°,

    根据题意得:AB=2.5,

    即此斛底面的正方形的边长为 尺.

    故答案为:

    【点睛】

    本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.

    2、

    【分析】

    连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB

    【详解】

    解:连接,如图,

    PAPB分别与⊙O相切

    故答案为:

    【点睛】

    本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.

    3、60

    【分析】

    RtBOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.

    【详解】

    解:如图作OEBCE

    OEBC

    BE=EC=,∠BOE=∠COE

    OE=1,

    OB=2OE

    ∴∠OBE=30°,

    ∴∠BOE=∠COE=60°,

    ∴∠BOC=120°,

    ∴∠BAC=60°,

    故答案为:60.

    【点睛】

    本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.

    4、

    【分析】

    过点C于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.

    【详解】

    解:过点C于点H

    在平行四边形中,

    平行四边形的面积为:

    图中黑色阴影部分的面积为:

    故答案为:

    【点睛】

    本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.

    5、

    【分析】

    由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为

    【详解】

    是一个圆锥在某平面上的正投影

    为等腰三角形

    ADBC

    中有

    由圆锥侧面积公式有

    故答案为:

    【点睛】

    本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为

    三、解答题

    1、

    (1)8

    (2)

    (3)

    【分析】

    (1)过点OOHAC于点H,由垂径定理可得AHCHAC,由锐角三角函数和勾股定理可求解;

    (2)分两种情况讨论,由相似三角形的性质可求AGEGCG的长,即可求解;

    (3)分两种情况讨论,由相似三角形和勾股定理可求解.

    (1)

    如图2,过点OOHAC于点H

    由垂径定理得:AHCHAC

    RtOAH中,

    ∴设OH=3xAH=4x

    OH2+AH2OA2

    ∴(3x2+(4x2=52

    解得:x=±1,(x=﹣1舍去),

    OH=3,AH=4,

    AC=2AH=8;

    (2)

    如图2,过点OOHACH,过EEGACG

    ∵∠DEO=∠AEC

    ∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD

    ∴∠ACD≠∠DOE

    ∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,

    ∴当△DOE与△AEC相似时,∠DOE=∠A

    ODAC

    ODOA=5,AC=8,

    ∵∠AGE=∠AHO=90°,

    GEOH

    ∴△AEG∽△AOH

    在Rt△CEG中,

    (3)

    当点E在线段OA上时,如图3,过点EEGACG,过点OOHACH,延长AO交⊙OM,连接ADDM

    由(1)可得 OH=3,AH=4,AC=8,

    OE=1,

    AE=4,ME=6,

    EGOH

    ∴△AEG∽△AOH

    AGEG

    GC

    EC

    AM是直径,

    ∴∠ADM=90°=∠EGC

    又∵∠M=∠C 

    ∴△EGC∽△ADM

    AD=2

    当点E在线段AO的延长线上时,如图4,延长AO交⊙OM,连接ADDM,过点EEGACG

    同理可求EGAGAE=6,GC

    EC

    AM是直径,

    ∴∠ADM=90°=∠EGC

    又∵∠M=∠C

    ∴△EGC∽△ADM 

    AD

    综上所述:AD的长是

    【点睛】

    本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.

    2、(1),(2)

    【分析】

    (1)根据弦AB垂直平分半径OCOC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×

    (2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.

    【详解】

    解:(1)∵弦AB垂直平分半径OCOC=OB=10cm,

    OD=CD=,∠ODB=90°,

    AB=2BD=2×

    故答案为

    (2)cos∠DOB=

    ∴∠DOB=60°,

    的度数为2×60°=120°,

    【点睛】

    本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键.

    3、(1)作图见解析;(2)

    【分析】

    (1)由于D点为⊙O的切点,即可得到OC=OD,且ODAB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;

    (2)连接CDOD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.

    【详解】

    解:(1)如图所示,先作∠A的角平分线,交BCO点,以O为圆心,OC为半径画出⊙O即为所求;

    (2)如图所示,连接CDOD

    由题意,AD为⊙O的切线,

    OCAC,且OC为半径,

    AC为⊙O的切线,

    AC=AD

    ∴∠ACD=∠ADC

    CD=BD

    ∴∠B=∠DCB

    ∵∠ADC=∠B+∠BCD

    ∴∠ACD=∠ADC=2∠DCB

    ∵∠ACB=90°,

    ∴∠ACD+∠DCB=90°,

    即:3∠DCB=90°,

    ∴∠DCB=30°,

    OC=OD

    ∴∠DCB=∠ODC=30°,

    ∴∠COD=180°-2×30°=120°,

    ∵∠DCB=∠B=30°,

    ∴在RtABC中,∠BAC=60°,

    AO平分∠BAC

    ∴∠CAO=∠DAO=30°,

    ∴在RtACO中,

    【点睛】

    本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.

    4、

    (1)见解析

    (2)CD=2

    【分析】

    (1)由题意易得BC=BD,∠DAM=DAF,则有∠CAB=DAB,进而可得∠BAM=90°,然后问题可求证;

    (2)由题意易得CD//AM,∠ANC=OCE=30°,然后可得OE=1,CE=,进而问题可求解.

    (1)

    证明:∵AB是⊙O的直径,弦CDAB于点E

    BC=BD

    ∴∠CAB=DAB

    AM是∠DAF的平分线

    ∴∠DAM=DAF

    ∵∠CAD+DAF=180°

    ∴∠DAB+DAM=90°

    即∠BAM=90°,ABAM

    AM是⊙O的切线

    (2)

    解:∵ABCDABAM

     CD//AM

    ∴∠ANC=OCE=30°

    Rt△OCE中,OC=2

    OE=1,CE=

    AB是⊙O的直径,弦CDAB于点E

    CD=2CE=2

    【点睛】

    本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键.

    5、(1)SABC=20;(2)见解析;(3)见解析.

    【分析】

    (1)设⊙O的半径为r,由切线长定理得,AEAD=4,BFBD=5,CECFr,由勾股定理得,(r+4)2+(r+5)2=92,进而求得结果;

    (2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;

    (3)可先计算∠AFB=135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点FAB的垂线,再根据直径所对的圆周角是90°,确定点C

    【详解】

    解:(1)如图1,

    设⊙O的半径为r

    连接OEOF

    ∵⊙O内切于△ABC

    OEACOFBCAEAD=4,BFBD=5,

    ∴∠OEC=∠OFC=∠C=90°,

    ∴四边形ECFO是矩形,

    CFOErCEOFr

    AC=4+rBC=5+r

    在Rt△ABC中,由勾股定理得,

    r+4)2+(r+5)2=92

    r2+9r=20,

    SABC

    =20;

    (2)

    如图2,

    (3)设△ABC的内切圆记作⊙F

    AFBF平分∠BAC和∠ABCFDAB

    ∴∠BAFCAB,∠ABF

    ∴∠BAF+∠ABF(∠BAC+∠ABC)==45°,

    ∴∠AFB=135°,

    可以按以下步骤作图(如图3):

    ①以BA为直径作圆,作AB的垂直平分线交圆于点E

    ②以E为圆心,AE为半径作圆,

    ③过点DAB的垂线,交圆于F

    ④连接EF并延长交圆于C,连接ACBC

    则△ABC就是求作的三角形.

    【点睛】

    本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键.

     

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共33页。

    初中数学沪科版九年级下册第24章 圆综合与测试巩固练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习,共31页。

    初中数学沪科版九年级下册第24章 圆综合与测试课时练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时练习,共33页。试卷主要包含了已知⊙O的半径为4,,则点A在,如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map