初中数学第24章 圆综合与测试随堂练习题
展开
这是一份初中数学第24章 圆综合与测试随堂练习题,共39页。试卷主要包含了如图,点A等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )
A. B.1 C.2 D.
2、下列判断正确的个数有( )
①直径是圆中最大的弦;
②长度相等的两条弧一定是等弧;
③半径相等的两个圆是等圆;
④弧分优弧和劣弧;
⑤同一条弦所对的两条弧一定是等弧.
A.1个 B.2个 C.3个 D.4个
3、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为( )
A.8 B. C. D.
4、在下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
5、如图,AB,CD是⊙O的弦,且,若,则的度数为( )
A.30° B.40° C.45° D.60°
6、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )
A.3 B.1 C. D.
7、如图,点A、B、C在上,,则的度数是( )
A.100° B.50° C.40° D.25°
8、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
9、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )
A. B. C.3 D.
10、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知正多边形的半径与边长相等,那么正多边形的边数是______.
2、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.
3、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.
4、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.
5、如图,将Rt△ABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,∠ABC=38°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 ___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是的直径,四边形内接于,是的中点,交的延长线于点.
(1)求证:是的切线;
(2)若,,求的长.
2、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.
(1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:
①直线y=2x+2;②直线y=﹣x+3;③双曲线y=,是⊙O的关联图形的是 (请直接写出正确的序号).
(2)如图2,⊙T的圆心为T(1,0),半径为1,直线l:y=﹣x+b与x轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.
(3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.
3、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接.
(1)如图1,当、、三点共线时,连接,若,求的长;
(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,连接、交于点.若,请直接写出的值.
4、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.
已知:⊙O.
求作:⊙O的内接等腰直角三角形ABC.
作法:如图,
①作直径AB;
②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;
③作直线MO交⊙O于点C,D;
④连接AC,BC.
所以△ABC就是所求的等腰直角三角形.
根据小明设计的尺规作图过程,解决下面的问题:
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接MA,MB.
∵MA=MB,OA=OB,
∴MO是AB的垂直平分线.
∴AC= .
∵AB是直径,
∴∠ACB= ( ) (填写推理依据) .
∴△ABC是等腰直角三角形.
5、如图,已知等边内接于⊙O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E.
(1)求证:CE是⊙O的切线;
(2)若AB的长为6,求CE的长.
-参考答案-
一、单选题
1、A
【分析】
取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
【详解】
解:如图,取BC的中点G,连接MG,
∵旋转角为60°,
∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,
∴∠HBN=∠GBM,
∵CH是等边△ABC的对称轴,
∴HB=AB,
∴HB=BG,
又∵MB旋转到BN,
∴BM=BN,
在△MBG和△NBH中,
,
∴△MBG≌△NBH(SAS),
∴MG=NH,
根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,
∴MG=CG=,
∴HN=,
故选A.
【点睛】
本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
2、B
【详解】
①直径是圆中最大的弦;故①正确,
②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确
③半径相等的两个圆是等圆;故③正确
④弧分优弧、劣弧和半圆,故④不正确
⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.
综上所述,正确的有①③
故选B
【点睛】
本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.
3、C
【分析】
如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.
【详解】
解:如图所示,连接CP,
∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,
∴∠CPO=90°,∠COP=45°,
∴∠PCO=∠COP=45°,
∴CP=OP=4,
∴,
故选C.
【点睛】
本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.
4、B
【分析】
根据中心对称图形与轴对称图形的定义解答即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,不符合题意;
B既是中心对称图形又是轴对称图形,符合题意;
C. 是轴对称图形,不是中心对称图形,不符合题意;
D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
故选B.
【点睛】
本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
5、B
【分析】
由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.
【详解】
解:∵,
∴,
∵,
∴,
故选:B.
【点睛】
题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.
6、D
【分析】
根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.
【详解】
解:如图,设与相交于点,
,,
,
旋转,
,
是等边三角形,
,,
,
,
,
,
,
阴影部分的面积为
故选D
【点睛】
本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.
7、C
【分析】
先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.
【详解】
∵∠ACB=50°,
∴∠AOB=100°,
∵OA=OB,
∴∠OAB=∠OBA= 40°,
故选:C.
【点睛】
本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
8、C
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.是轴对称图形,不是中心对称图形,故此选项不合题意;
B.不是轴对称图形,是中心对称图形,故此选项不符合题意;
C.是轴对称图形,也是中心对称图形,故此选项合题意;
D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9、D
【分析】
连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得
【详解】
如图,连接,
,
是直角三角形,且
是等边三角形
是直径,
故选D
【点睛】
本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.
10、C
【分析】
过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.
【详解】
解:如图,过点A作AC⊥x轴于点C,
设 ,则 ,
∵ ,,
∴,
∵, ,
∴ ,
解得: ,
∴ ,
∴ ,
∴点 ,
∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,
∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.
故选:C
【点睛】
本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.
二、填空题
1、六
【分析】
设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.
【详解】
解:设这个正多边形的边数为n,
∵正多边形的半径与边长相等,
∴OA=OB=AB,
∴△OAB是等边三角形,
∴∠AOB=60°,
∴,
∴,
∴正多边形的边数是六,
故答案为:六.
【点睛】
本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.
2、①②④
【分析】
连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.
【详解】
解:连接OM,
∵PE为的切线,
∴,
∵,
∴,
∴,
∵,,
∴,
即AM平分,故①正确;
∵AB为的直径,
∴,
∵,,
∴,
∴,
∴,故②正确;
∵,
∴,
∵,
∴,
∴的长为,故③错误;
∵,,,
∴,
∴,
∴,
∴,
又∵,,,
∴,
又∵,
∴,
设,则,
∴,
在中,,
∴,
∴,
由①可得,
,
故④正确,
故答案为:①②④.
【点睛】
本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
3、5
【分析】
直接利用直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
解:根据直角三角形斜边上的中线等于斜边的一半,
即可知道点到点A,B,C的距离相等,
如下图:
,
,
故答案是:5.
【点睛】
本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.
4、60
【分析】
根据弧长公式求解即可.
【详解】
解:,
解得,,
故答案为:60.
【点睛】
本题考查了弧长公式,灵活应用弧长公式是解题的关键.
5、76°或142°
【分析】
设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,根据圆周角定理得∠BOD=2∠BCD,根据等腰三角形的性质分BC为底边和BC为腰求∠BCD的度数即可.
【详解】
解:设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,
∵Rt△ABC的斜边AB与量角器的直径恰好重合,
∴A、C、B、D四点共圆,圆心为点O,
∴∠BOD=2∠BCD,
①若BC为等腰三角形的底边时,如图射线CD1,则∠BCD1=∠ABC=38°,
连接OD1,则∠BOD1=2∠BCD1=76°;
②若BC为等腰三角形的腰时,
当∠ABC为顶角时,如图射线CD2,则∠BCD2=(180°-∠ABC)÷2=71°,
连接OD2,则∠BOD2=2∠BCD2=142°,
当∠ABC为底角时,∠BCD=180°-2∠ABC=104°,不符合题意,舍去,
综上,点D在量角器上对应的度数是76°或142°,
故答案为:76°或142°.
【点睛】
本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键.
三、解答题
1、(1)见详解;(2)
【分析】
(1)连接OD,由圆周角定理可得∠AOD=∠ABC,从而得OD∥BC,进而即可得到结论;
(2)连接AC,交OD于点F,利用勾股定理可得AC,,再证明四边形DFCE是矩形,进而即可求解.
【详解】
(1)证明:连接OD,
∵是的中点,
∴∠ABC=2∠ABD,
∵∠AOD=2∠ABD,
∴∠AOD=∠ABC,
∴OD∥BC,
∵,
∴,
∴是的切线;
(2)连接AC,交OD于点F,
∵AB是直径,
∴∠ACB=90°,
∴AC=,
∵是的中点,
∴OD⊥AC,AF=CF=3,
∴,
∴DF=5-4=1,
∵∠E=∠EDF=∠DFC=90°,
∴四边形DFCE是矩形,
∴DE=CF=3,CE=DF=1,
∴,
∴AD=CD=,
∵∠ADB=90°,
∴
【点睛】
本题主要考查切线的判定定理,圆周角定理以及勾股定理,添加辅助线构造直角三角形和矩形,是解题的关键.
2、(1)①③;(2)点N的横坐标;(3)或.
【分析】
(1)在坐标系中作出圆及三个函数图象,即可得;
(2)根据题意可得直线l的临界状态是与圆T相切的两条直线和,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;
(3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BP、DQ,交于点H;②当点P在点Q的上方时,直线BP、DQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.
【详解】
解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,
故答案为:①③;
(2)如图所示:
∵直线l是的关联直线,
∴直线l的临界状态是与相切的两条直线和,
当临界状态为时,连接TM,
∴,,
∵当时,,
当时,,
∴,
∴为等腰直角三角形,
∴,
,
∴点,
同理可得当临界状态为时,
点,
∴点N的横坐标;
(3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BP、DQ,交于点H;
设点,直线HB的解析式为,直线HD的解析式为,
当时,与互为相反数,可得
,
得,
由图可得:,则,
∴,
结合,
解得:,,
∴,
当时,,
∴,h的最大值为,
②如图所示:当点P在点Q的上方时,直线BP、DQ,交于点H,当圆心I在x轴上时,
设点,直线HB的解析式为,直线HD的解析式为,
当时,与互为相反数,可得
,
得,
由图可得:,则,
∴,
结合,
解得:,,
∴,
当时,,
∴,h的最小值为,
③当时,两条直线与圆无公共点,不符合题意,
∴,
综上可得:或.
【点睛】
题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.
3、(1);(2);证明见解析;(3)
【分析】
(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,,,勾股定理即可求解;
(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;
(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值
【详解】
(1)过点作于点,如图
将绕点顺时针旋转120°,得到,
是等边三角形
,
,
在中,,
(2)如图,延长至,使得,连接,过点作,交于点,
点是的中点
又
四边形是平行四边形
,
将绕点顺时针旋转120°,得到,
是等边三角形
,,
是等边三角形
设,则,
,
,
是等边三角形
,
即
(3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,
四点共圆
由(2)可知,
将绕点顺时针旋转120°,得到,
是的中点,
是的中位线
是等腰直角三角形
四边形是矩形
,
设
在中,
,
在中,
在中
【点睛】
本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键.
4、(1)见解析;(2)BC,90°,直径所对的圆周角是直角
【分析】
(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交⊙O于点C,D;连结AC、BC即可;
(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出∠ACB=90°即可.
【详解】
(1)①作直径AB;
②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;
③作直线MO交⊙O于点C,D;
④连接AC,BC.
所以△ABC就是所求的等腰直角三角形.
(2)证明:连接MA,MB.
∵MA=MB,OA=OB,
∴MO是AB的垂直平分线.
∴AC=BC.
∵AB是直径,
∴∠ACB=90°(直径所对的圆周角是直角) .
∴△ABC是等腰直角三角形.
故答案为:BC,90°,直径所对的圆周角是直角.
【点睛】
本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键.
5、(1)见解析;(2)3
【分析】
(1)由题意连接OC,OB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;
(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.
【详解】
解:(1)证明:如图连接OC、OB.
∵是等边三角形
∴
∵
∴
又 ∵
∴
∴
∴
∴与⊙O相切;
(2)∵四边形ABCD是⊙O的内接四边形,
∴
∴
∵D为的中点,
∴
∴
∵
∴
∴
【点睛】
本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时练习,共32页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试一课一练,共31页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后复习题,共30页。