终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷沪科版九年级数学下册第24章圆必考点解析试卷

    立即下载
    加入资料篮
    精品试卷沪科版九年级数学下册第24章圆必考点解析试卷第1页
    精品试卷沪科版九年级数学下册第24章圆必考点解析试卷第2页
    精品试卷沪科版九年级数学下册第24章圆必考点解析试卷第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试课后测评

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试课后测评,共29页。
    沪科版九年级数学下册第24章圆必考点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    2、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )
    A. B.
    C. D.
    3、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).

    A.20° B.25° C.30° D.40°
    4、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )
    A.60 B.90 C.120 D.180
    5、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    6、在下列图形中,既是中心对称图形又是轴对称图形的是( )
    A. B.
    C. D.
    7、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )

    A. B. C. D.
    8、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )
    A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径
    C.直径是最长的弦 D.垂直于弦的直径平分这条弦
    9、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为( )

    A.3 B. C. D.
    10、下列说法正确的个数有( )
    ①方程的两个实数根的和等于1;
    ②半圆是弧;
    ③正八边形是中心对称图形;
    ④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;
    ⑤如果反比例函数的图象经过点,则这个函数图象位于第二、四象限.
    A.2个 B.3个 C.4个 D.5个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.

    2、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
    ①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.

    3、如图,在⊙O中,∠BOC=80°,则∠A=___________°.

    4、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.
    5、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OM、OP在直线AB上,其中.

    (1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP在的内部且平分,此时三角板OPQ旋转的角度为______度;
    (2)三角板OPQ在绕点O按逆时针方向旋转时,若OP在的内部.试探究与之间满足什么等量关系,并说明理由;
    (3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OC、OD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OC与OD第二次相遇前,当时,直接写出旋转时间t的值.
    2、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D.
    (1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);
    (2)在(1)所作的图中,连接CD,若CD=BD,且AC=6.求劣弧的长.

    3、综合与实践
    “利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;与垂直于点,足够长.

    使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了.
    为了说明这一方法的正确性,需要对其进行证明.
    独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整.
    已知:如图2,点,,,在同一直线上,,垂足为点,________,切半圆于.求证:________________.
    探究解决:(2)请完成证明过程.
    应用实践:(3)若半圆的直径为,,求的长度.
    4、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.

    5、如图,已知等边内接于⊙O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E.
    (1)求证:CE是⊙O的切线;
    (2)若AB的长为6,求CE的长.


    -参考答案-
    一、单选题
    1、D
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.

    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    2、C
    【分析】
    利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.
    【详解】
    解:A、不是中心对称图形,故A错误.
    B、不是中心对称图形,故B错误.
    C、是中心对称图形,故C正确.
    D、不是中心对称图形,故D错误.
    故选:C.
    【点睛】
    本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.
    3、B
    【分析】
    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
    【详解】
    解:连接OA,如图,

    ∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴∠PAO=90°,
    ∵∠P=40°,
    ∴∠AOP=50°,
    ∵OA=OB,
    ∴∠B=∠OAB,
    ∵∠AOP=∠B+∠OAB,
    ∴∠B=∠AOP=×50°=25°.
    故选:B.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    4、C
    【分析】
    根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.
    【详解】
    解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.
    故选C.
    【点睛】
    本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.
    5、C
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是轴对称图形,是中心对称图形,故此选项符合题意;
    D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:C.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    6、B
    【分析】
    根据中心对称图形与轴对称图形的定义解答即可.
    【详解】
    解:A.是轴对称图形,不是中心对称图形,不符合题意;
    B既是中心对称图形又是轴对称图形,符合题意;
    C. 是轴对称图形,不是中心对称图形,不符合题意;
    D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
    故选B.
    【点睛】
    本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
    7、A
    【分析】
    连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
    【详解】
    解:连结OC,
    ∵以边上一点为圆心作,恰与边,分别相切于点A, ,
    ∴DC=AC,OC平分∠ACD,
    ∵,,
    ∴∠ACD=90°-∠B=60°,
    ∴∠OCD=∠OCA==30°,
    在Rt△ABC中,AC=ABtanB=3×,
    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
    ∴OD=OA=1,DC=AC=,
    ∴,,
    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
    ∴,
    S阴影=.
    故选择A.

    【点睛】
    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
    8、A
    【分析】
    定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.
    【详解】
    A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;
    B、C选项,根据圆的定义可以得到;
    D选项,是垂径定理;
    故选:A
    【点睛】
    本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.
    9、A
    【分析】
    分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.
    【详解】
    解:连接BO,并延长交⊙O于D,连结DC,
    ∵∠A=30°,
    ∴∠D=∠A=30°,
    ∵BD为直径,
    ∴∠BCD=90°,
    在Rt△BCD中,BC=3,∠D=30°,
    ∴BD=2BC=6,
    ∴OB=3.
    故选A.

    【点睛】
    本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.
    10、B
    【分析】
    根据所学知识对五个命题进行判断即可.
    【详解】
    1、Δ=12-4×1=-3

    相关试卷

    沪科版九年级下册第24章 圆综合与测试复习练习题:

    这是一份沪科版九年级下册第24章 圆综合与测试复习练习题,共25页。

    初中数学沪科版九年级下册第24章 圆综合与测试练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共29页。

    初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共30页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map