|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年最新强化训练沪科版九年级数学下册第24章圆专项攻克试卷(无超纲带解析)
    立即下载
    加入资料篮
    2022年最新强化训练沪科版九年级数学下册第24章圆专项攻克试卷(无超纲带解析)01
    2022年最新强化训练沪科版九年级数学下册第24章圆专项攻克试卷(无超纲带解析)02
    2022年最新强化训练沪科版九年级数学下册第24章圆专项攻克试卷(无超纲带解析)03
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试精练

    展开
    这是一份初中数学沪科版九年级下册第24章 圆综合与测试精练,共31页。

    沪科版九年级数学下册第24章圆专项攻克

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、点P(3,﹣2)关于原点O的对称点的坐标是(  )

    A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)

    2、如图图案中,不是中心对称图形的是(   

    A. B. C. D.

    3、如图,AB是⊙O的直径,弦,则阴影部分图形的面积为(   

    A. B. C. D.

    4、下列汽车标志中既是轴对称图形又是中心对称图形的是(   

    A. B. C. D.

    5、下列图形中,既是轴对称图形,又是中心对称图形的是(  )

    A. B. C. D.

    6、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是(   

    A.  B. 

    C.  D.

    7、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是(   

    A.50° B.60° C.40° D.30°

    8、如图,在中,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是(   

    A. B. C. D.

    9、如图,在中,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为(   

    A.3 B.4 C.5 D.6

    10、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积(   

    A.不变 B.面积扩大为原来的3倍

    C.面积扩大为原来的9倍 D.面积缩小为原来的

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中.为区别口味,他打算制作“** 饼干”字样的矩形标签粘贴在盒子侧面.为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90°(如图).已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_______ cm.(π取3.1)

    2、在△ABC中,AB = AC,以AB为直径的圆OBC边于点D.要使得圆OAC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD > AB;④AB < DE < AB

    3、若一次函数ykx+8(k≠0)的图象与x轴、y轴分别交于AB两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90°得到BQ,连接OQ,则OQ长的最小值是 ___.

    4、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.

    5、已知OI分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.

    三、解答题(5小题,每小题10分,共计50分)

    1、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若PQ两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.

    已知点N(3,0),A(1,0),

    (1)①在点ABC中,线段ON的“二分点”是______;

    ②点Da,0),若点C为线段OD的“二分点”,求a的取值范围;

    (2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.

    2、如图,四边形ABCD内接于⊙OAC是直径,点C是劣弧BD的中点.

    (1)求证:

    (2)若,求BD

    3、阅读以下材料,并按要求完成相应的任务:

    从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:

    如下图1,在正方形中,以为顶点的边分别交于两点.易证得

    大致证明思路:如图2,将绕点顺时针旋转,得到,由可得三点共线,,进而可证明,故

     

    任务:

    如图3,在四边形中,,以为顶点的边分别交于两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.

    4、问题:如图,的直径,点内,请仅用无刻度的直尺,作出边上的高.

    小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.

    作法:如图,

    ①延长于点,延长于点

    ②分别连接并延长相交于点

    ③连接并延长交于点

    所以线段即为边上的高.

    (1)根据小芸的作法,补全图形;

    (2)完成下面的证明.

    证明:∵的直径,点上,

    ________°.(______)(填推理的依据)

    ,________是的两条高线.

    所在直线交于点

    ∴直线也是的高所在直线.

    边上的高.

    5、解题与遐想.

    如图,RtABC的内切圆与斜边AB相切于点DAD=4,BD=5.求RtABC的面积.

    王小明:这道题算出来面积刚好是20,太凑巧了吧.刚好是4×5=20,有种白算的感觉…

    赵丽华:我把4和5换成mn再算一遍,△ABC的面积总是mn!确实非常神奇了…

    数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?

    霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了.我怎么想不出来呢?

    计算验证

    (1)通过计算求出RtABC的面积.

    拼图演绎

    (2)将RtABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明.

    尺规作图

    (3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个RtABC,使它的内切圆与斜边AB相切于点D.(保留作图的痕迹,写出必要的文字说明)

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    根据“平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.

    【详解】

    解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).

    故选:B

    【点睛】

    本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.

    2、C

    【分析】

    根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.

    【详解】

    解:A、是中心对称图形,故A选项不合题意;

    B、是中心对称图形,故B选项不合题意;

    C、不是中心对称图形,故C选项符合题意;

    D、是中心对称图形,故D选项不合题意;

    故选:C

    【点睛】

    本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.

    3、D

    【分析】

    根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.

    【详解】

    解:设ABCD交于点E

    AB是⊙O的直径,弦CDABCD=2,如图,

    CE=CD=,∠CEO=∠DEB=90°,

    ∵∠CDB=30°,

    ∴∠COB=2∠CDB=60°,

    ∴∠OCE=30°,

    又∵,即

    在△OCE和△BDE中,

    ∴△OCE≌△BDEAAS),

    ∴阴影部分的面积S=S扇形COB=

    故选D.

    【点睛】

    本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.

    4、C

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;

    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;

    C、是轴对称图形,是中心对称图形,故此选项符合题意;

    D、不是轴对称图形,是中心对称图形,故此选项不符合题意;

    故选:C

    【点睛】

    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

    5、C

    【详解】

    解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;

    选项B不是轴对称图形,是中心对称图形,故B不符合题意;

    选项C既是轴对称图形,也是中心对称图形,故C符合题意;

    选项D是轴对称图形,不是中心对称图形,故D不符合题意;

    故选C

    【点睛】

    本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.

    6、C

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    A.是轴对称图形,不是中心对称图形,故此选项不合题意;

    B.不是轴对称图形,是中心对称图形,故此选项不符合题意;

    C.是轴对称图形,也是中心对称图形,故此选项合题意;

    D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.

    故选:C.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    7、A

    【分析】

    根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.

    【详解】

    解: 将△OAB绕点O逆时针旋转80°得到△OCD

    A的度数为110°,∠D的度数为40°,

    故选A

    【点睛】

    本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.

    8、C

    【分析】

    过点AACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.

    【详解】

    解:如图,过点AACx轴于点C

    ,则

    解得:

    ∴点

    ∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是

    ∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是

    故选:C

    【点睛】

    本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.

    9、A

    【分析】

    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.

    【详解】

    由旋转的性质得:

    是等边三角形,

    故选:A.

    【点睛】

    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.

    10、A

    【分析】

    设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.

    【详解】

    设原来扇形的半径为r,圆心角为n

    ∴原来扇形的面积为

    ∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的

    ∴变化后的扇形的半径为3r,圆心角为

    ∴变化后的扇形的面积为

    ∴扇形的面积不变.

    故选:A.

    【点睛】

    本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.

    二、填空题

    1、9.3

    【分析】

    根据弧长公式进行计算即可,

    【详解】

    解:粘贴后标签上边缘所在弧所对的圆心角为90°,底面半径为6 cm,

    cm,

    故答案为:

    【点睛】

    本题考查了弧长公式,牢记弧长公式是解题的关键.

    2、②④

    【分析】

    将所给四个条件逐一判断即可得出结论.

    【详解】

    解:在中,

    ①当∠BAC > 60°时,若时,点E与点A重合,不符合题意,故①不满足;

    ②当∠ABC时,点E与点A重合,不符合题意,当∠ABC时,点E与点O不关于AD对称,当时,点E关于直线AD的对称点在线段OA上,

    所以,当45° < ∠ABC < 60°时,点E关于直线AD的对称点在线段OA上,故②满足条件;

    ③当时,点E关于直线AD的对称点在线段OA上,故③不满足条件;

    ④当AB < DE < AB时,点E关于直线AD的对称点在线段OA上,故④满足条件;

    所以,要使得AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是45° < ∠ABC < 60°或AB < DE < AB

    故答案为②④

    【点睛】

    本题考查了圆周角定理,正确判断出每种情况是解答本题的关键.

    3、8

    【分析】

    根据一次函数解析式可得:,过点B轴,过点A,过点Q,由旋转的性质可得,依据全等三角形的判定定理及性质可得:,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可.

    【详解】

    解:函数得:,过点B轴,过点A,过点Q,连接OQ,如图所示:

    将线段BA绕点B逆时针旋转得到线段BQ

    中,

    Q的坐标为

    时,取得最小值为8,

    故答案为:8.

    【点睛】

    题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键.

    4、35°

    【分析】

    根据旋转的性质可得∠AOD=∠BOC=30°,AODO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.

    【详解】

    解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,

    ∴∠AOD=∠BOC=30°,AODO

    ∵∠AOC=100°,

    ∴∠BOD=100°−30°×2=40°,

    ADO=∠A(180°−∠AOD)=(180°−30°)=75°,

    由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.

    故答案为:35°.

    【点睛】

    本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.

    5、140

    【分析】

    的外接圆,根据三角形内心的性质可得:,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.

    【详解】

    解:如图所示,作的外接圆,

    ∵点I的内心,

    BICI分别平分

    ∵点O的外心,

    故答案为:140.

    【点睛】

    题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.

    三、解答题

    1、(1)①BC;②;(2)

    【分析】

    (1)①分别找出点ABC到线段ON的最小值和最大值,是否满足“二分点”定义即可;

    ②对a的取值分情况讨论:,根据“二分点”的定义可求解;

    (2)设线段AN上存在的“二分点”为,对的取值分情况讨论,根据“二分点”的定义可求解.

    【详解】

    (1)①

    ∵点AON上,故最小值为0,不符合题意,

    BON的最小值为,最大值为

    ∴点B是线段ON的“二分点”,

    CON的最小值为1,最大值为

    ∴点C是线段ON的“二分点”,

    故答案为:BC

    ②若时,如图所示:

    COD的最小值为,最大值为

    ∵点C为线段OD的“二分点”,

    解得:

    ,如图所示:

    COD的最小值为1,最大值为,满足题意;

    时,如图所示:

    COD的最小值为1,最大值为

    ∵点C为线段OD的“二分点”,

    解得:(舍);

    时,如图所示:

    COD的最小值为,最大值为

    ∵点C为线段OD的“二分点”,

    解得:(舍),

    综上所得:a的取值范围为

    (2)

    如图所示,设线段AN上存在的“二分点”为

    时,最小值为:,最大值为:

    ,即

    时,最小值为:,最大值为:

    ∴∴,即

    不存在;

    时,最小值为:,最大值为:

    ,即

    不存在;

    时,最小值为:,最大值为:

    ,即

    综上所述,r的取值范围为

    【点睛】

    本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.

    2、(1)见详解;(2)

    【分析】

    (1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;

    (2)由题意易得,然后由(1)可知△ABD是等边三角形,进而问题可求解.

    【详解】

    (1)证明:∵AC是直径,点C是劣弧BD的中点,

    AC垂直平分BD

    (2)解:∵

    ∴△ABD是等边三角形,

    【点睛】

    本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键.

    3、成立,证明见解析

    【分析】

    根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF

    【详解】

    解:成立.

    证明:将绕点顺时针旋转,得到

    三点共线,

    【点睛】

    本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.

    4、(1)见详解;(2)90,直径所对的圆周角是直角,BD

    【分析】

    (1)根据作图步骤作出图形即可;

    (2)根据题意填空,即可求解.

    【详解】

    解:(1)如图,CH为△ABC中AB边上的高;

    (2)证明:∵的直径,点上,

    ___90_°.(__直径所对的圆周角是直角_)(填推理的依据)

    ,_BD__是的两条高线.

    所在直线交于点

    ∴直线也是的高所在直线.

    边上的高.

    故答案为:90,直径所对的圆周角是直角,BD

    【点睛】

    本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键.

    5、(1)SABC=20;(2)见解析;(3)见解析.

    【分析】

    (1)设⊙O的半径为r,由切线长定理得,AEAD=4,BFBD=5,CECFr,由勾股定理得,(r+4)2+(r+5)2=92,进而求得结果;

    (2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;

    (3)可先计算∠AFB=135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点FAB的垂线,再根据直径所对的圆周角是90°,确定点C

    【详解】

    解:(1)如图1,

    设⊙O的半径为r

    连接OEOF

    ∵⊙O内切于△ABC

    OEACOFBCAEAD=4,BFBD=5,

    ∴∠OEC=∠OFC=∠C=90°,

    ∴四边形ECFO是矩形,

    CFOErCEOFr

    AC=4+rBC=5+r

    在Rt△ABC中,由勾股定理得,

    r+4)2+(r+5)2=92

    r2+9r=20,

    SABC

    =20;

    (2)

    如图2,

    (3)设△ABC的内切圆记作⊙F

    AFBF平分∠BAC和∠ABCFDAB

    ∴∠BAFCAB,∠ABF

    ∴∠BAF+∠ABF(∠BAC+∠ABC)==45°,

    ∴∠AFB=135°,

    可以按以下步骤作图(如图3):

    ①以BA为直径作圆,作AB的垂直平分线交圆于点E

    ②以E为圆心,AE为半径作圆,

    ③过点DAB的垂线,交圆于F

    ④连接EF并延长交圆于C,连接ACBC

    则△ABC就是求作的三角形.

    【点睛】

    本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键.

     

    相关试卷

    数学九年级下册第24章 圆综合与测试习题: 这是一份数学九年级下册第24章 圆综合与测试习题,共30页。

    数学九年级下册第26章 概率初步综合与测试课后复习题: 这是一份数学九年级下册第26章 概率初步综合与测试课后复习题,共18页。试卷主要包含了下列事件是必然事件的是等内容,欢迎下载使用。

    九年级下册第24章 圆综合与测试随堂练习题: 这是一份九年级下册第24章 圆综合与测试随堂练习题,共30页。试卷主要包含了在圆内接四边形ABCD中,∠A,如图,点A,将一把直尺等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map