初中数学沪科版九年级下册第24章 圆综合与测试习题
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试习题,共38页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
2、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为( )
A.64° B.52° C.42° D.36°
3、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )
A. B. C. D.
4、如图,是△ABC的外接圆,已知,则的大小为( )
A.55° B.60° C.65° D.75°
5、下列判断正确的个数有( )
①直径是圆中最大的弦;
②长度相等的两条弧一定是等弧;
③半径相等的两个圆是等圆;
④弧分优弧和劣弧;
⑤同一条弦所对的两条弧一定是等弧.
A.1个 B.2个 C.3个 D.4个
6、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
A.相离 B.相切 C.相交 D.相交或相切
7、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为( )
A.3 B. C. D.
8、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )
A.3 B.1 C. D.
9、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )
A. B. C. D.
10、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )
A.它们的开口方向相同 B.它们的对称轴相同
C.它们的变化情況相同 D.它们的顶点坐标相同
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.
2、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.
3、如图,已知正方形ABCD的边长为6,E为CD边上一点,将绕点A旋转至,连接,若,则的长等于______.
4、如图,已知扇形的圆心角为60°,半径为2,则图中弓形(阴影部分)的面积为______.
5、边长为2的正三角形的外接圆的半径等于___.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系xOy中,的半径为2.点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”.
(1)如图,点A,B,C,D横、纵坐标都是整数.在点B,C,D中,与点A组成的“成对关联点”的点是______;
(2)点在第一象限,点F与点E关于x轴对称.若点E,F是的“成对关联点”,直接写出t的取值范围;
(3)点G在y轴上.若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围.
2、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.
(1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:
①直线y=2x+2;②直线y=﹣x+3;③双曲线y=,是⊙O的关联图形的是 (请直接写出正确的序号).
(2)如图2,⊙T的圆心为T(1,0),半径为1,直线l:y=﹣x+b与x轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.
(3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.
3、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OM、OP在直线AB上,其中.
(1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP在的内部且平分,此时三角板OPQ旋转的角度为______度;
(2)三角板OPQ在绕点O按逆时针方向旋转时,若OP在的内部.试探究与之间满足什么等量关系,并说明理由;
(3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OC、OD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OC与OD第二次相遇前,当时,直接写出旋转时间t的值.
4、如图①,在Rt△ABC中,∠BAC = 90°,AB = k·AC,△ADE是由△ABC绕点A逆时针旋转某个角度得到的,BC与DE交于点F,直线BD与EC交于点G
(1)求证:BD = k·EC;
(2)求∠CGD的度数;
(3)若k = 1(如图②),求证:A,F,G三点在同一直线上.
5、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.
已知点N(3,0),A(1,0),,.
(1)①在点A,B,C中,线段ON的“二分点”是______;
②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;
(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.
-参考答案-
一、单选题
1、D
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、B
【分析】
先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.
【详解】
解:∵CC′∥AB,
∴∠ACC′=∠CAB=64°
∵△ABC在平面内绕点A旋转到△AB′C′的位置,
∴∠CAC′等于旋转角,AC=AC′,
∴∠ACC′=∠AC′C=64°,
∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,
∴旋转角为52°.
故选:B.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
3、B
【分析】
由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.
【详解】
解:根据题意,如图:
∵AB是的直径,OD是半径,,
∴AE=CE,
∴阴影CED的面积等于AED的面积,
∴,
∵,,
∴,
∴;
故选:B
【点睛】
本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.
4、C
【分析】
由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.
【详解】
解:∵OA=OB,,
∴∠BAO=.
∴∠AOB=130°.
∴=∠AOB=65°.
故选:C.
【点睛】
此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.
5、B
【详解】
①直径是圆中最大的弦;故①正确,
②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确
③半径相等的两个圆是等圆;故③正确
④弧分优弧、劣弧和半圆,故④不正确
⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.
综上所述,正确的有①③
故选B
【点睛】
本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.
6、B
【分析】
圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
【详解】
解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
⊙O的半径等于圆心O到直线l的距离,
直线l与⊙O的位置关系为相切,
故选B
【点睛】
本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
7、A
【分析】
分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.
【详解】
解:连接BO,并延长交⊙O于D,连结DC,
∵∠A=30°,
∴∠D=∠A=30°,
∵BD为直径,
∴∠BCD=90°,
在Rt△BCD中,BC=3,∠D=30°,
∴BD=2BC=6,
∴OB=3.
故选A.
【点睛】
本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.
8、D
【分析】
根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.
【详解】
解:如图,设与相交于点,
,,
,
旋转,
,
是等边三角形,
,,
,
,
,
,
,
阴影部分的面积为
故选D
【点睛】
本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.
9、A
【分析】
连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
【详解】
解:连结OC,
∵以边上一点为圆心作,恰与边,分别相切于点A, ,
∴DC=AC,OC平分∠ACD,
∵,,
∴∠ACD=90°-∠B=60°,
∴∠OCD=∠OCA==30°,
在Rt△ABC中,AC=ABtanB=3×,
在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
∴OD=OA=1,DC=AC=,
∴,,
∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
∴,
S阴影=.
故选择A.
【点睛】
本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
10、B
【分析】
根据旋转的性质及抛物线的性质即可确定答案.
【详解】
抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.
故选:B
【点睛】
本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.
二、填空题
1、
【分析】
利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案.
【详解】
解:由旋转得,,=∠BAC=30°,
∵∠ABC=90°,∠BAC=30°,BC=1,
∴AC=2BC=2,AB=,,
∴阴影部分的面积=
=,
故答案为:.
.
【点睛】
此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.
2、
【分析】
根据旋转找出规律后再确定坐标.
【详解】
∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,
∴每6次翻转为一个循环组循环,
∵,
∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,
∵,
∴,
∴翻转前进的距离为:,
如图,过点B作BG⊥x于G,
则∠BAG=60°,
∴,
,
∴,
∴点B的坐标为.
故答案为:.
【点睛】
题考查旋转的性质与正多边形,由题意找出规律是解题的关键.
3、4
【分析】
在正方形ABCD中,BE′=DE=2,所以在直角三角形E′CE中,E′C=8,CE=4,利用勾股定理求得EE′的长即可.
【详解】
解:在正方形ABCD中,∠C=90°,
由旋转得,BE′=DE=2,
∴E′C=8,CE=4,
∴在直角三角形E′CE中,
EE′===4.
故答案为4.
【点睛】
本题考查了正方形的性质、旋转的性质与勾股定理的知识,正确的利用旋转和正方形的性质得出直角三角形边长并正确的应用勾股定理是解题的关键.
4、
【分析】
根据弓形的面积=扇形的面积-三角形的面积求解即可.
【详解】
解:如图,AC⊥OB,
∵圆心角为60°,OA=OB,
∴△OAB是等边三角形,
∴OC=OB=1,
∴AC=,
∴S△OAB=OB×AC=×2×=,
∵S扇形OAB==,
∴弓形(阴影部分)的面积= S扇形OAB- S△OAB=,
故答案为:.
【点睛】
本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键.
5、
【分析】
过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.
【详解】
如图所示,是正三角形,故O是的中心,,
∵正三角形的边长为2,OE⊥AB
∴,,
∴,
由勾股定理得:,
∴,
∴,
∴(负值舍去).
故答案为:.
【点睛】
本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.
三、解答题
1、(1)B和C;(2);(3)
【分析】
(1)根据图形可确定与点A组成的“成对关联点”的点;
(2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;
(3)分类讨论:点G在上,点G在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围.
【详解】
(1)如图所示:
在点B,C,D中,与点A组成的“成对关联点”的点是B和C,
故答案为:B和C;
(2)∵
∴在直线上,
∵点F与点E关于x轴对称,
∴在直线,
如下图所示:
直线和与分别交于点,,与直线分别交于,,
由题可得:,
当点E在线段上时,有的“成对关联点”
∴;
(3)
如图,当点G在上时,轴,在上不存在这样的矩形;
如图,当点G在下方时,也不存在这样的矩形;
如图,当点G在上方时,存在这样的矩形GMNH,
当恰好只能构成一个矩形时,
设,直线与y轴相交于点K,
则,,,,,
∴,即,
∴,
解得:或(舍),
综上:当时,点G,H是的“成对关联点”.
【点睛】
本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键.
2、(1)①③;(2)点N的横坐标;(3)或.
【分析】
(1)在坐标系中作出圆及三个函数图象,即可得;
(2)根据题意可得直线l的临界状态是与圆T相切的两条直线和,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;
(3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BP、DQ,交于点H;②当点P在点Q的上方时,直线BP、DQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.
【详解】
解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,
故答案为:①③;
(2)如图所示:
∵直线l是的关联直线,
∴直线l的临界状态是与相切的两条直线和,
当临界状态为时,连接TM,
∴,,
∵当时,,
当时,,
∴,
∴为等腰直角三角形,
∴,
,
∴点,
同理可得当临界状态为时,
点,
∴点N的横坐标;
(3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BP、DQ,交于点H;
设点,直线HB的解析式为,直线HD的解析式为,
当时,与互为相反数,可得
,
得,
由图可得:,则,
∴,
结合,
解得:,,
∴,
当时,,
∴,h的最大值为,
②如图所示:当点P在点Q的上方时,直线BP、DQ,交于点H,当圆心I在x轴上时,
设点,直线HB的解析式为,直线HD的解析式为,
当时,与互为相反数,可得
,
得,
由图可得:,则,
∴,
结合,
解得:,,
∴,
当时,,
∴,h的最小值为,
③当时,两条直线与圆无公共点,不符合题意,
∴,
综上可得:或.
【点睛】
题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.
3、
(1)135°
(2)∠MOP-∠NOQ=30°,理由见解析
(3)s或s.
【分析】
(1)先根据OP平分得到∠PON,然后求出∠BOP即可;
(2)先根据题意可得∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,然后作差即可;
(3)先求出旋转前OC、OD的夹角,然后再求出OC与OD第一次和第二次相遇所需要的时间,再设在OC与OD第二次相遇前,当时,需要旋转时间为t,再分OE在OC的左侧和OE在OC的右侧两种情况解答即可.
(1)
解:∵OP平分∠MON
∴∠PON=∠MON=45°
∴三角板OPQ旋转的角:∠BOP=∠PON+∠NOB=135°.
故答案是135°
(2)
解:∠MOP-∠NOQ=30°,理由如下:
∵∠MON=90°,∠POQ=60°
∴∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,
∴∠MOP-∠NOQ=90°-∠POQ -(60°-∠POQ)=30°.
(3)
解:∵射线OC平分,射线OD平分
∴∠NOC=45°,∠POD=30°
∴选择前OC与OD的夹角为∠COD=∠NOC+∠NOP+∠POD=165°
∴OC与OD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°
∴此时OC与OE的夹角165-(180-45-2×33)=96°
OC与OD第二次相遇需要时间360°÷(3°+2°)=72秒
设在OC与OD第二次相遇前,当时,需要旋转时间为t
①当OE在OC的左侧时,有(5°-2°)t=96°-13°,解得:t=s
②当OE在OC的右侧时,有(5°-2°)t=96°+13°,解得:t=s
然后,①②都是每隔360÷(5°-2°)=120秒,出现一次这种现象
∵C、D第二次相遇需要时间72秒
∴在OC与OD第二次相遇前,当时,、旋转时间t的值为s或s.
【点睛】
本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键.
4、(1)见解析;(2)90°;(3)见解析
【分析】
(1)由旋转的性质可得对应边相等对应角相等,由相似三角形的判定得出△ABD∽△ACE,由相似三角形的性质即可得出结论 ;
(2)由(1)证得△ABD∽△ACE,和等腰三角形的性质得出,进而推出,由四边形的内角和定理得出结论;
(3)连接CD,由旋转的性质和等腰三角形的性质得出,CG=DG,FC=FD,由垂直平分线的判断得出A,F,G都在CD的垂直平分线上,进而得出结论.
【详解】
证明:(1)∵△ADE是由△ABC绕点A逆时针旋转某个角度得到的,
∴AB=AD,AC=AE,∠BAD=∠CAE,
∴,
∴△ABD∽△ACE,
∴,
∵AB = k·AC,
∴,
∴BD = k·EC;
(2)由(1)证得△ABD∽△ACE,
∴,
∵AB=AD,AC=AE,∠BAC = 90°,
∴,
∴,
∵,
∴,
∴∴在四边形ADGE中,,∠BAC = 90°,
∴∠CGD=360°-180°-90°=90°;
(3)连接CD,如图:
∵△ADE是由△ABC绕点A逆时针旋转某个角度得到的,∠BAC = 90°,AB = k·AC,
∴当k = 1时,△ABC和△ADE为等腰直角三角形,
∴,
∴,
∴,∴CG=DG
∵,
∴,∴FC=FD,
∴点A、点G和点F在CD的垂直平分线上,
∴A,F,G三点在同一直线上.
【点睛】
本题考查了相似三角形的性质和判定,旋转的性质,等腰直角三角形的性质和判定,垂直平分线的判定等知识点,熟练掌握相似三角形的判定和垂直平分线的判定是解题的关键.
5、(1)①B和C;②或;(2)或
【分析】
(1)①分别找出点A,B,C到线段ON的最小值和最大值,是否满足“二分点”定义即可;
②对a的取值分情况讨论:、、和,根据“二分点”的定义可求解;
(2)设线段AN上存在的“二分点”为,对的取值分情况讨论、,、,和,根据“二分点”的定义可求解.
【详解】
(1)①
∵点A在ON上,故最小值为0,不符合题意,
点B到ON的最小值为,最大值为,
∴点B是线段ON的“二分点”,
点C到ON的最小值为1,最大值为,
∴点C是线段ON的“二分点”,
故答案为:B和C;
②若时,如图所示:
点C到OD的最小值为,最大值为,
∵点C为线段OD的“二分点”,
∴,
解得:;
若,如图所示:
点C到OD的最小值为1,最大值为,满足题意;
若时,如图所示:
点C到OD的最小值为1,最大值为,
∵点C为线段OD的“二分点”,
∴,
解得:(舍);
若时,如图所示:
点C到OD的最小值为,最大值为,
∵点C为线段OD的“二分点”,
∴,
解得:或(舍),
综上所得:a的取值范围为或;
(2)
如图所示,设线段AN上存在的“二分点”为,
当时,最小值为:,最大值为:,
∴,即,
∵,
∴
∴;
当,时,最小值为:,最大值为:,
∴∴,即,
∵,
∴,
∵,
∴不存在;
当,时,最小值为:,最大值为:,
∴,即,
∴,
∵,
∴不存在;
当时,最小值为:,最大值为:,
∴,即,
∴,
∵,
∴,
综上所述,r的取值范围为或.
【点睛】
本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试同步达标检测题,共31页。
这是一份数学九年级下册第24章 圆综合与测试练习题,共30页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。
这是一份2021学年第24章 圆综合与测试当堂检测题,共35页。试卷主要包含了下列判断正确的个数有,如图,是的直径,等内容,欢迎下载使用。