终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷沪科版九年级数学下册第24章圆专题测评练习题(精选含解析)

    立即下载
    加入资料篮
    精品试卷沪科版九年级数学下册第24章圆专题测评练习题(精选含解析)第1页
    精品试卷沪科版九年级数学下册第24章圆专题测评练习题(精选含解析)第2页
    精品试卷沪科版九年级数学下册第24章圆专题测评练习题(精选含解析)第3页
    还剩34页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试当堂检测题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共37页。
    沪科版九年级数学下册第24章圆专题测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )
    A.不变 B.面积扩大为原来的3倍
    C.面积扩大为原来的9倍 D.面积缩小为原来的
    2、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )
    A.它们的开口方向相同 B.它们的对称轴相同
    C.它们的变化情況相同 D.它们的顶点坐标相同
    3、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为(  )

    A.5厘米 B.4厘米 C.厘米 D.厘米
    4、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )

    A.①②③ B.①②④ C.①③④ D.②③④
    5、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )

    A.3 B.4 C.5 D.6
    6、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )

    A. B.1 C.2 D.
    7、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12
    8、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )
    A. B.
    C. D.
    9、如图,AB是⊙O的直径,弦,,,则阴影部分图形的面积为( )

    A. B. C. D.
    10、下列图形中,是中心对称图形也是轴对称图形的是(  )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则______.

    2、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.
    3、已知如图,AB=8,AC=4,∠BAC=60°,BC所在圆的圆心是点O,∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为____________.

    4、如图,已知,在中,,.将绕点A逆时针旋转一个角至位置,连接BD,CE交于点F.
    (I)求证:;
    (2)若四边形ABFE为菱形,求的值;
    (3)在(2)的条件下,若,直接写出CF的值.

    5、如图,在⊙O中,∠BOC=80°,则∠A=___________°.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点A作AD∥OC,交BC的延长线于D.

    (1)求证:AD是⊙O的切线;
    (2)若⊙O的半径为2,∠OCB=75°,求△ABC边AB的长.
    2、如图,已知线段,点A在线段上,且,点B为线段上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为和.若旋转后M、N两点重合成一点C(即构成),设.

    (1)的周长为_______;
    (2)若,求x的值.
    3、如图1,BC是⊙O的直径,点A,P在⊙O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQ⊥AP,交PC 的延长线于点Q,AQ交⊙O于点D,已知AB=3,AC=4.

    (1)求证:△APQ∽△ABC.
    (2)如图2,当点C为的中点时,求AP的长.
    (3)连结AO,OD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.
    4、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.
    (1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;
    (2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;
    (3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.

    5、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D.

    (1)弦AB的长为 .
    (2)求劣弧的长.

    -参考答案-
    一、单选题
    1、A
    【分析】
    设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.
    【详解】
    设原来扇形的半径为r,圆心角为n,
    ∴原来扇形的面积为,
    ∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的,
    ∴变化后的扇形的半径为3r,圆心角为,
    ∴变化后的扇形的面积为,
    ∴扇形的面积不变.
    故选:A.
    【点睛】
    本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.
    2、B
    【分析】
    根据旋转的性质及抛物线的性质即可确定答案.
    【详解】
    抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.
    故选:B
    【点睛】
    本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.
    3、D
    【分析】
    根据题意先求出弦AC的长,再过点O作OB⊥AC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中根据勾股定理求出r的值即可.
    【详解】
    解:∵杯口外沿两个交点处的读数恰好是2和8,
    ∴AC=8-2=6厘米,
    过点O作OB⊥AC于点B,

    则AB=AC=×6=3厘米,
    设杯口的半径为r,则OB=r-2,OA=r,
    在Rt△AOB中,
    OA2=OB2+AB2,即r2=(r-2)2+32,
    解得r=厘米.
    故选:D.
    【点睛】
    本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    4、B
    【分析】
    根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
    【详解】
    解:∵,,点D、E分别是AB、AC的中点.
    ∴∠DAE=90°,AD=AE=,
    ∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
    ∴∠DAB=∠EAC,
    在△DAB和△EAC中,

    ∴△DAB≌△EAC(SAS),
    故①△AEC≌△ADB正确;

    作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
    ∵△AEC≌△ADB,
    ∴∠DBA=∠ECA,
    ∴∠PBA+∠P=∠ECP+∠BAC,
    ∴∠P=∠BAC=90°,
    ∵CP为⊙A的切线,
    ∴AE⊥CP,
    ∴∠DPE=∠PEA=∠DAE=90°,
    ∴四边形DAEP为矩形,
    ∵AD=AE,
    ∴四边形DAEP为正方形,
    ∴PE=AE=3,
    在Rt△AEC中,CE=,
    ∴CP最大=PE+EC=3+,
    故②CP存在最大值为正确;

    ∵△AEC≌△ADB,
    ∴BD=CE=,
    在Rt△BPC中,BP最小=,
    BP最短=BD-PD=-3,
    故③BP存在最小值为不正确;
    取BC中点为O,连结AO,OP,
    ∵AB=AC=6,∠BAC=90°,
    ∴BP=CO=AO=,
    当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
    ∴∠ACE=30°,
    ∴∠AOP=2∠ACE=60°,
    当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
    ∴∠ABD=30°,
    ∴∠AOP′=2∠ABD=60°,
    ∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
    ∵∠POP=∠POA+∠AOP′=60°+60°=120°,
    ∴L.
    故④点P运动的路径长为正确;
    正确的是①②④.
    故选B.

    【点睛】
    本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
    5、B
    【分析】
    由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
    【详解】
    ∵PA,PB是⊙O的切线,A,B为切点,
    ∴,,
    ∴在和中,,
    ∴,
    ∴.
    故选:B
    【点睛】
    本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
    6、A
    【分析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    解:如图,取BC的中点G,连接MG,

    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,
    ∴MG=CG=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    7、D
    【分析】
    连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
    【详解】
    解:连接OB,OC,

    ∵∠BAC=30°,
    ∴∠BOC=60°.
    ∵OB=OC,BC=6,
    ∴△OBC是等边三角形,
    ∴OB=BC=6.
    ∴⊙O的直径等于12.
    故选:D.
    【点睛】
    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
    8、C
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A.是轴对称图形,不是中心对称图形,故此选项不合题意;
    B.不是轴对称图形,是中心对称图形,故此选项不符合题意;
    C.是轴对称图形,也是中心对称图形,故此选项合题意;
    D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    9、D
    【分析】
    根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.
    【详解】
    解:设AB与CD交于点E,
    ∵AB是⊙O的直径,弦CD⊥AB,CD=2,如图,

    ∴CE=CD=,∠CEO=∠DEB=90°,
    ∵∠CDB=30°,
    ∴∠COB=2∠CDB=60°,
    ∴∠OCE=30°,
    ∴,
    ∴,
    又∵,即
    ∴,
    在△OCE和△BDE中,

    ∴△OCE≌△BDE(AAS),

    ∴阴影部分的面积S=S扇形COB=,
    故选D.
    【点睛】
    本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.
    10、C
    【分析】
    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故B选项不符合题意;
    C、既是轴对称图形,又是中心对称图形,故C选项符合题意;
    D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.
    故选:C.
    【点睛】
    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    二、填空题
    1、
    【分析】
    根据旋转角相等可得,进而勾股定理求解即可
    【详解】
    解:四边形是正方形

    将绕点B顺时针方向旋转,能与重合,


    故答案为:
    【点睛】
    本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90°是解题的关键.
    2、在⊙A上
    【分析】
    先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.
    【详解】
    解:∵点A的坐标为(4,3),
    ∴OA==5,
    ∵半径为5,
    ∴OA=r,
    ∴点O在⊙A上.
    故答案为:在⊙A上.
    【点睛】
    本题考查了点与圆的位置关系:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外⇔d>r;当点P在圆上⇔d=r;当点P在圆内⇔d<r.
    3、12
    【分析】
    如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题.
    【详解】
    解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,

    ∴当MN的值最小时,△PEF的值最小,
    ∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,
    ∴∠MAN=120°,
    ∴MN=AM=PA,
    ∴当PA的值最小时,MN的值最小,
    取AB的中点J,连接CJ.
    ∵AB=8,AC=4,
    ∴AJ=JB=AC=4,
    ∵∠JAC=60°,
    ∴△JAC是等边三角形,
    ∴JC=JA=JB,
    ∴∠ACB=90°,
    ∴BC=,
    ∵∠BOC=60°,OB=OC,
    ∴△OBC是等边三角形,
    ∴OB=OC=BC=4,∠BCO=60°,
    ∴∠ACH=30°,
    ∵AH⊥OH,
    AH=AC=2,CH=AH=2,
    ∴OH=6,
    ∴OA==4,
    ∵当点P在直线OA上时,PA的值最小,最小值为-,
    ∴MN的最小值为•(-)=-12.
    故答案:-12.
    【点睛】
    本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题.
    4、(1)见解析;(2)120°;(3)
    【分析】
    (1)根据旋转的性质和全等三角形的判定解答即可;
    (2)根据等腰三角形的性质求得∠ABD=90°-,∠BAE=+30°,根据菱形的邻角互补求解即可;
    (3)连接AF,根据菱形的性质和全等三角形的性质可求得∠FAC=45°,∠FCA=30°,过F作FG⊥AC于G,设FG=x,根据等腰直角三角形的性质和含30°角的直角三角形的性质求解即可.
    【详解】
    解:(1)由旋转得:AB=AD,AC=AE,∠BAD=∠CAE=,
    ∵AB=AC,
    ∴AB=AC=AD=AE,
    在△ABD和△ACE中,

    ∴△ABD≌△ACE(SAS);
    (2)∵AB=AD,∠BAD=,∠BAC=30°,
    ∴∠ABD=(180°-∠BAD)÷2=(180°-)÷2=90°-,∠BAE=+30°,
    ∵四边形ABFE是菱形,
    ∴∠BAE+∠ABD=180°,即+30°+90°-=180°,
    解得:=120°;
    (3)连接AF,
    ∵四边形ABFE是菱形,∠BAE=+30°=150°,
    ∴∠BAF=∠BAE=75°,又∠BAC=30°,
    ∴∠FAC=75°-30°=45°,
    ∵△ABD≌△ACE,
    ∴∠FCA=∠ABD=90°-=30°,
    过F作FG⊥AC于G,设FG=x,
    在Rt△AGF中,∠FAG=45°,∠AGF=90°,
    ∴∠AFG=∠FAG=45°,
    ∴△AGF是等腰直角三角形,
    ∴AG=FG=x,
    在在Rt△AGF中,∠FCG=30°,∠FGC=90°,
    ∴CF=2FG=2x,,
    ∵AC=AB=2,又AG+CG=AC,
    ∴,
    解得:,
    ∴CF=2x= .

    【点睛】
    本题考查全等三角形的判定与性质、旋转的性质、菱形的性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、三角形的内角和定理、解一元一次方程等知识,熟练掌握相关知识的联系与运用是解答的关键.
    5、40°度
    【分析】
    直接根据圆周角定理即可得出结论.
    【详解】
    解:与是同弧所对的圆心角与圆周角,,

    故答案为:.
    【点睛】
    本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    三、解答题
    1、(1)见解析;(2)
    【分析】
    (1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;
    (2)连接OB,过点O作OE⊥AB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB =30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=.
    【详解】
    解:(1)如图所示,连接OA,
    ∵∠CBA=45°,
    ∴∠COA=90°,
    ∵AD∥OC,
    ∴∠OAD+∠COA=180°,
    ∴∠OAD=90°,
    又∵点A在圆O上,
    ∴AD是⊙O的切线;

    (2)连接OB,过点O作OE⊥AB,垂足为E,
    ∵∠OCB=75°,OB=OC,
    ∴∠OCB=∠OBC=75°,
    ∴∠COB=180°-∠OCB-∠OBC=30°,
    由(1)证可得∠AOC=90°,
    ∴∠AOB=120°,
    ∵OA=OB,
    ∴∠OAB=∠OBA=30°,
    又∵OE⊥AB,
    ∴AE=BE,
    在Rt△AOE中,AO=2,∠OAE=30°,
    ∴OE=AO=1,
    由勾股定理可得,,
    ∴AB=.

    【点睛】
    本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键.
    2、
    (1)4
    (2)
    【分析】
    (1)由旋转知:AM=AC=1,BN=BC,将△ABC的周长转化为MN;
    (2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.
    (1)
    解:由旋转知:AM=AC=1,BN=BC=3-x,
    ∴△ABC的周长为:AC+AB+BC=MN=4;
    故答案为:4;
    (2)
    解:∵α+β=270°,
    ∴∠CAB+∠CBA=360°-270°=90°,
    ∴∠ACB=180°-(∠CAB+∠CBA)
    =180°-90°
    =90°,
    ∴AC2+BC2=AB2,
    即12+(3-x)2=x2,
    解得.
    【点睛】
    本题主要考查了旋转的性质,勾股定理等知识,证明∠ACB=90°是解题的关键.
    3、(1)见解析;(2)(3)当,时,;当时,.
    【分析】
    (1)通过证,,即可得;
    (2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP.
    (3)分类讨论, ,,,三种情况讨论,再通过勾股定理和相似即可求解.
    【详解】
    证明:(1)∵AQ⊥AP

    ∵BC是⊙O的直径




    (2)如图,连接CD,PD

    ∵BC是⊙O的直径

    ∵AB=3,AC=4
    ∴利用勾股定理得:,即直径为5


    ∴DP是⊙O的直径,且DP=BC=5
    ∵点C为的中点
    ∴CD=PC


    ∴是等腰直角三角形
    ∴利用勾股定理得:,则
    ∵,



    ∴,即:



    ∴,即:

    (3)连接AO,OD,OP,CD,OD交AC于点M

    ∵(已证)
    ∴OD,OP共线,为⊙O的直径
    情况一:当时
    ∵,

    ∴AP=PC



    ∴即
    ∵AP=PC

    ∴在中,

    ∴在中,
    情况二:当时,



    同情况一:
    情况三:当时
    ∵,

    ∴,
    ∵OA=OD



    综上所述,当,时,;当时,.
    【点睛】
    本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.
    4、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为或.
    【分析】
    (1)延长FD至G,使DG=BE,连接AG,先证△ABE≌△ADG,再证△GAF≌△EAF即可;
    (2)在DC上截取DH=BE,连接AH,先证△ADH≌△ABE,再证△HAF≌EAF即可;
    (3)分两种情形分别求解即可解决问题.
    【详解】
    解:(1)结论:EF=BE+DF.
    理由:延长FD至G,使DG=BE,连接AG,如图①,

    ∵ABCD是正方形,
    ∴AB=AD,∠ABE=ADG=∠DAB=90°,
    ∴△ABE≌△ADG(AAS),
    ∴AE=AG,∠DAG=∠EAB,
    ∵∠EAF=45°,
    ∴∠DAF+∠EAB=45°,
    ∴∠DAF+∠DAG=45°,
    ∴∠GAF=∠EAF=45°,
    ∵AF=AF,
    ∴△GAF≌△EAF(AAS),
    ∴EF=GF,
    ∴GF=DF+DG=DF+BE,
    即:EF=DF+BE;
    (2)结论:EF=DF-BE.
    理由:在DC上截取DH=BE,连接AH,如图②,

    ∵AD=AB,∠ADH=∠ABE=90°,
    ∴△ADH≌△ABE(SAS),
    ∴AH=AE,∠DAH=∠EAB,
    ∵∠EAF=∠EAB+∠BAF=45°,
    ∴∠DAH+∠BAF=45°,
    ∴∠HAF=45°=∠EAF,
    ∵AF=AF,
    ∴△HAF≌EAF(SAS),
    ∴HF=EF,
    ∵DF=DH+HF,
    ∴EF=DF-BE;
    (3)①当MA经过BC的中点E时,同(1)作辅助线,如图:

    设FD=x,由(1)的结论得FG=EF=2+x,FC=4-x.
    在Rt△EFC中,(x+2)2=(4-x)2+22,
    ∴x=,
    ∴EF=x+2=.
    ②当NA经过BC的中点G时,同(2)作辅助线,

    设BE=x,由(2)的结论得EC=4+x,EF=FH,
    ∵K为BC边的中点,
    ∴CK=BC=2,
    同理可证△ABK≌FCK(SAS),
    ∴CF=AB=4,EF=FH=CF+CD-DH=8-x,
    在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,
    ∴x=,
    ∴EF=8-=.
    综上,线段EF的长为或.
    【点睛】
    本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.
    5、(1),(2).
    【分析】
    (1)根据弦AB垂直平分半径OC,OC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×;
    (2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.
    【详解】
    解:(1)∵弦AB垂直平分半径OC,OC=OB=10cm,
    ∴OD=CD=,∠ODB=90°,
    ∴,
    ∴AB=2BD=2×,
    故答案为;
    (2)cos∠DOB=,
    ∴∠DOB=60°,
    ∴的度数为2×60°=120°,
    ∴.
    【点睛】
    本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键.

    相关试卷

    初中数学第24章 圆综合与测试同步测试题:

    这是一份初中数学第24章 圆综合与测试同步测试题,共29页。

    初中数学第24章 圆综合与测试同步达标检测题:

    这是一份初中数学第24章 圆综合与测试同步达标检测题,共33页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试综合训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共33页。试卷主要包含了下列判断正确的个数有,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map