沪科版九年级下册第24章 圆综合与测试课后作业题
展开
这是一份沪科版九年级下册第24章 圆综合与测试课后作业题,共28页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、的边经过圆心,与圆相切于点,若,则的大小等于( )
A.B.C.D.
2、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
A.20°B.25°C.30°D.40°
3、下列图形中,可以看作是中心对称图形的是( )
A.B.
C.D.
4、如图图案中,不是中心对称图形的是( )
A.B.C.D.
5、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )
A.B.C.D.
6、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )
A.B.C.D.
7、下列判断正确的个数有( )
①直径是圆中最大的弦;
②长度相等的两条弧一定是等弧;
③半径相等的两个圆是等圆;
④弧分优弧和劣弧;
⑤同一条弦所对的两条弧一定是等弧.
A.1个B.2个C.3个D.4个
8、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
A.相离B.相切C.相交D.相交或相切
9、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
A.OP>4B.0≤OP2D.0≤OP4,
故选:A.
【点睛】
此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
10、B
【分析】
先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.
【详解】
解:∵CC′∥AB,
∴∠ACC′=∠CAB=64°
∵△ABC在平面内绕点A旋转到△AB′C′的位置,
∴∠CAC′等于旋转角,AC=AC′,
∴∠ACC′=∠AC′C=64°,
∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,
∴旋转角为52°.
故选:B.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
二、填空题
1、4
【分析】
在正方形ABCD中,BE′=DE=2,所以在直角三角形E′CE中,E′C=8,CE=4,利用勾股定理求得EE′的长即可.
【详解】
解:在正方形ABCD中,∠C=90°,
由旋转得,BE′=DE=2,
∴E′C=8,CE=4,
∴在直角三角形E′CE中,
EE′===4.
故答案为4.
【点睛】
本题考查了正方形的性质、旋转的性质与勾股定理的知识,正确的利用旋转和正方形的性质得出直角三角形边长并正确的应用勾股定理是解题的关键.
2、22020
【分析】
根据,,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.
【详解】
解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),
∴OA0=1,
∴点A1 的横坐标是 1=20,
∴OA1=2OA0=2,
∵∠A2A1O=90°,∠A2OA1=60°,
∴OA2=2OA1=4,
∴点A2 的横坐标是- OA2=-2=-21,
依次进行下去,Rt△OA2A3,Rt△OA3A4…,
同理可得:
点A3 的横坐标是﹣2OA2=﹣8=﹣23,
点A4 的横坐标是﹣8=﹣23,
点A5 的横坐标是 OA5=×2OA4=2OA3=4OA2=16=24,
点A6 的横坐标是2OA5=2×2OA4=23OA3=64=26,
点A7 的横坐标是64=26,
…
发现规律,6次一循环,
即
,
,
2021÷6=336……5
则点A2021的横坐标与的坐标规律一致是 22020.
故答案为:22020.
【点睛】
本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.
3、4
【分析】
由周长公式可得⊙O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长.
【详解】
∵⊙O的周长为8π
∴⊙O半径为4
∵正六边形ABCDEF内接于⊙O
∴正六边形ABCDEF中心角为
∴正六边形ABCDEF为6个边长为4的正三角形组成的
∴正六边形ABCDEF边长为4.
故答案为:4.
【点睛】
本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键.
4、
【分析】
由题意可知二次函数与坐标轴的三个交点坐标为(0,k),(1,0),(-k,0),将其代入抛物线()即可得m、k的二元一次方程组,即可解出,故这个一次函数的解析式为.
【详解】
一次函数与y轴的交点为(0,k),与x轴的交点为(1,0)
绕O点逆时针旋转90°后,与x轴的交点为(-k,0)
即(0,k),(1,0),(-k,0)过抛物线()
即
得
将代入有
整理得
解得k=3或k=-1(舍)
将k=3代入得
故方程组的解为
则一次函数的解析式为
故答案为:.
【点睛】
本题考查了一次函数和二次函数的图象及其性质,解二元一次方程组,结合旋转的性质以及图象得出抛物线与坐标轴的三个交点坐标是解题的关键.
5、3
【分析】
过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解.
【详解】
解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,
∵=, AB=10,
∴∠ACB=∠B=∠D,AB=AC=10,
∵AE⊥BC,BC=12,
∴BE=CE=6,
∴,
∵∠B=∠D,∠AEB=∠CFD=90°,
∴△ABE∽△CDF,
∴,
∵AB=10,CD=5,BE=6,AE=8,
∴,
解得:DF=3,CF=4,
在Rt△AFC中,∠AFC=90°,AC=10,CF=4,
则,
∴AD=DF+AF=3+2,
故答案为:3+2.
【点睛】
本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.
三、解答题
1、(1)见解析;(2)
【分析】
(1)连接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,从而可证得△OBC≌△ODC,即可证得CD是⊙O的切线;
(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,
从而可得,则可求得OC的长.
【详解】
(1)连接OD,
∵,
∴.
又∵,
∴,
∴.
在与中,
∴,
∴.
又∵,
∴,
∴是的切线.
(2)∵,
∴,
∴,
∴.
又∵,
∴,
∴,
∴,
∴,
∴,
∴OC=15
【点睛】
本题是圆的综合,它考查了切线的判定,三角形全等的判定与性质,相似三角形的判定与性质等知识;证明圆的切线时,往往作半径.
2、
(1)5
(2)证明见解析
(3)
【分析】
(1)过C作CM⊥AB于M,根据等腰三角形的性质求出CM和DM,再根据勾股定理计算即可;
(2)连BE,先证明,即可得到直角三角形ABE,利用勾股定理证明即可;
(3)取AC中点N,连接FN、BN,根据三角形BFN中三边关系判断即可.
(1)
过C作CM⊥AB于M,
∵,
∴
∵
∴
∴在Rt中
(2)
连接BE,
∵,,,
∴,
∴
∴,
∴
在Rt中
∴
∴
(3)
取AC中点N,连接FN、BN,
∵,,
∴
∵AF垂直CD
∴
∵AC中点N,
∴
∴
∵三角形BFN中
∴
∴当B、F、N三点共线时BF最小,最小值为.
【点睛】
本题考查等腰直角三角形的常用辅助线以及直角三角形斜边上的中线,解题的关键是根据等腰直角三角形作斜边垂线或者构造“手拉手模型”.
3、(1)见解析;(2)
【分析】
(1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;
(2)连接OB,过点O作OE⊥AB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB =30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=.
【详解】
解:(1)如图所示,连接OA,
∵∠CBA=45°,
∴∠COA=90°,
∵AD∥OC,
∴∠OAD+∠COA=180°,
∴∠OAD=90°,
又∵点A在圆O上,
∴AD是⊙O的切线;
(2)连接OB,过点O作OE⊥AB,垂足为E,
∵∠OCB=75°,OB=OC,
∴∠OCB=∠OBC=75°,
∴∠COB=180°-∠OCB-∠OBC=30°,
由(1)证可得∠AOC=90°,
∴∠AOB=120°,
∵OA=OB,
∴∠OAB=∠OBA=30°,
又∵OE⊥AB,
∴AE=BE,
在Rt△AOE中,AO=2,∠OAE=30°,
∴OE=AO=1,
由勾股定理可得,,
∴AB=.
【点睛】
本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键.
4、AM=EN,理由见解析
【分析】
根据旋转性质和等边三角形的性质可证得∠ABM=∠EBN,BM=BN,AB=BE,根据全等三角形的判定证明△ABM≌△EBN即可得出结论.
【详解】
解:AM=EN,理由为:
∵△ABE是等边三角形,
∴AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,
∵线段BM绕点B逆时针旋转60°得到BN,
∴BM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,
∴∠ABM=∠EBN,
在△ABM和△EBN中,
,
∴△ABM≌△EBN(SAS),
∴AM=EN.
【点睛】
本题考查等边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键.
5、见解析
【分析】
由题意画图,再根据圆周角定理的推论即可得证结论.
【详解】
证明:根据题意作图如下:
∵BD是圆周角ABC的角平分线,
∴∠ABD=∠CBD,
∴,
∴AD=CD.
【点睛】
本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共30页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。
这是一份初中数学第24章 圆综合与测试课时练习,共37页。试卷主要包含了将一把直尺等内容,欢迎下载使用。
这是一份数学九年级下册第24章 圆综合与测试课时作业,共28页。试卷主要包含了下列说法正确的个数有,下列图形中,是中心对称图形的是,如图,点A等内容,欢迎下载使用。