搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练沪科版九年级数学下册第24章圆专项练习试卷(含答案详解)

    2022年最新强化训练沪科版九年级数学下册第24章圆专项练习试卷(含答案详解)第1页
    2022年最新强化训练沪科版九年级数学下册第24章圆专项练习试卷(含答案详解)第2页
    2022年最新强化训练沪科版九年级数学下册第24章圆专项练习试卷(含答案详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试练习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试练习题,共29页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是△ABC的外接圆,已知,则的大小为(      A.55° B.60° C.65° D.75°2、平面直角坐标系中点关于原点对称的点的坐标是(    A. B. C. D.3、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(    A.3 B.1 C. D.4、点P(-3,1)关于原点对称的点的坐标是(    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)5、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是(    A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径C.直径是最长的弦 D.垂直于弦的直径平分这条弦6、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是(    A.1 B. C. D.27、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是(      A.60 B.90 C.120 D.1808、下列图形中,既是中心对称图形也是轴对称图形的是(    A. B. C. D.9、如图图案中,不是中心对称图形的是(    A. B. C. D.10、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△ABC′的位置,使CCAB,则旋转角的度数为(    A.64° B.52° C.42° D.36°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点ABC在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.2、如图,PMPN分别与⊙O相切于AB两点,C为⊙O上异于AB的一点,连接ACBC.若∠P=58°,则∠ACB的大小是___________.3、已知正多边形的半径与边长相等,那么正多边形的边数是______.4、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.5、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).三、解答题(5小题,每小题10分,共计50分)1、如图,中,,连接,点MNP分别是的中点.(1)请你判断的形状,并证明你的结论.(2)将绕点A旋转,若,请直接写出周长的最大值与最小值.2、如图,的直径,四边形内接于的中点,的延长线于(1)求证:的切线;(2)若,求的长.3、如图,ABC是⊙O的内接三角形,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E(1)求证:ADEC(2)若AD=6,求线段AE的长.4、在平面直角坐标系xOy中,旋转角满足,对图形M与图形N给出如下定义:将图形M绕原点逆时针旋转得到图形P为图形上任意一点,Q为图形N上的任意一点,称PQ长度的最小值为图形M与图形N的“转后距”.已知点,点,点(1)当时,记线段OA为图形M①画出图形②若点C为图形N,则“转后距”为______;③若线段AC为图形N,求“转后距”;(2)已知点,点,记线段AB为图形M,线段PQ为图形N,对任意旋转角,“转后距”大于1,直接写出t的取值范围.5、如图,AB是⊙O的一条弦,EAB的中点,过点EECOA于点C,过点BO的切线交CE的延长线于点D(1)求证:DBDE(2)若AB12,BD5,求AC长. -参考答案-一、单选题1、C【分析】OA=OB,求出∠AOB=130°,根据圆周角定理求出的度数.【详解】解:∵OA=OB∴∠BAO=∴∠AOB=130°.=AOB=65°.故选:C【点睛】此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.2、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.3、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设相交于点旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.4、C【分析】据平面直角坐标系中任意一点Pxy),关于原点的对称点是(xy),然后直接作答即可.【详解】解:根据中心对称的性质,可知:点P3,1)关于原点O中心对称的点的坐标为(3,1).故选:C.【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.5、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.6、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点CCEABE,利用,求出BE,根据垂径定理求出BD即可得到答案.【详解】解: 在Rt中,BC=3,连接CD,过点CCEABE解得CB=CDCEAB故选:B【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.7、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.故选C.【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.8、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.9、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.10、B【分析】先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠ACC=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.【详解】解:∵CC′∥AB∴∠ACC′=∠CAB=64°∵△ABC在平面内绕点A旋转到△ABC′的位置,∴∠CAC′等于旋转角,AC=AC′,∴∠ACC′=∠ACC=64°,∴∠CAC′=180°-∠ACC′-∠ACC=180°-2×64°=52°,∴旋转角为52°.故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.二、填空题1、【分析】连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.【详解】解:如图所示,连接OB,交AC于点D∵四边形OABC为平行四边形,∴四边形OABC为菱形, 为等边三角形,中,设,则解得:(舍去),的长为:故答案为:【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.2、【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PMPN分别与⊙O相切于AB两点, 故答案为:【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.3、六【分析】设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.【详解】解:设这个正多边形的边数为n∵正多边形的半径与边长相等,OA=OB=AB∴△OAB是等边三角形,∴∠AOB=60°,∴正多边形的边数是六,故答案为:六.【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.4、60【分析】正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.【详解】360°÷6=60°故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.5、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形ABCD′的位置,∴∠ADC=∠D=90°,∠DAD′=α∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.三、解答题1、(1)是等腰直角三角形,证明见解析(2)周长最小值为。最大值为【分析】(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.(1)连接BD,CE,如图, ∴BD=CE,∵点MNP分别是的中点//,PN//BD,PN=BD∴PM=PN, ∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90° 是等腰直角三角形;(2)由(1)知,是等腰直角三角形 的周长为 的周长为 当BD最小时即点D在AB上,此时周长最小,∵AB=8,AD=3∴BD的最小值为AB-AD=8-3=5周长最小为当点D在BA的延长线上时,BD最大,此时周长最大,∴BD=AB+AD=8+3=11周长最大为【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.2、(1)见详解;(2)【分析】(1)连接OD,由圆周角定理可得∠AOD=∠ABC,从而得ODBC,进而即可得到结论;(2)连接AC,交OD于点F,利用勾股定理可得AC,再证明四边形DFCE是矩形,进而即可求解.【详解】(1)证明:连接OD的中点,∴∠ABC=2∠ABD∵∠AOD=2∠ABD∴∠AOD=∠ABCODBC的切线;(2)连接AC,交OD于点FAB是直径,∴∠ACB=90°,AC=的中点,ODACAF=CF=3,DF=5-4=1,∵∠E=∠EDF=∠DFC=90°,∴四边形DFCE是矩形,DE=CF=3,CE=DF=1,AD=CD=∵∠ADB=90°,【点睛】本题主要考查切线的判定定理,圆周角定理以及勾股定理,添加辅助线构造直角三角形和矩形,是解题的关键.3、(1)见解析;(2)6【分析】(1)连接OC,根据CE是⊙O的切线,可得∠OCE,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE,即可求证;(2)过点AAFECEC于点F,由∠AOCOAOC,可得∠OAC,从而得到∠BAD,再由ADEC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.【详解】证明:(1)连接OCCE是⊙O的切线,∴∠OCE∵∠ABC∴∠AOC=2∠ABC∵∠AOC+∠OCEADEC(2)解:过点AAFECEC于点F∵∠AOCOAOC∴∠OAC∵∠BAC∴∠BADADEC∵∠OCE,∠AOC,∠AFC=90°,∴四边形OAFC是矩形,OAOC∴四边形OAFC是正方形,RtAFE中,AE=2AF=6.【点睛】本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.4、(1)①OA′,图形见详解;②2;③ “转后距”为;(2)t的取值范围为t<-5或0<t<2或【分析】(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形OA′.②∵点C为图形N,求出OC=2最短距离;③过点OOFACF,先证△OAC为等边三角形,OFAC,根据勾股定理求出OF=即可;(2)点,点,可求tan∠OPQ=,得出当点Px轴负半轴时,∠OPQ=120°,当点Px轴正半轴时,∠OPQ=60°,得出∠CAB=∠ABC=30°,分三种情况,当°,当点P在点B右边,PB=t-4,BD>1,列不等式,解得,当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,PB=2PE>2×1即4-t>2解得t<2,当t=0时,OA′=2,A′Q=2-1=1,t>0,当点PB′左边,PB′>1,OB′=OB=4,t<-5即可.【详解】解:(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形OA′;②∵点C为图形N,OC=2为图形M与图形N的“转后距”,∴“转后距”为2,故答案为2;③线段AC为图形N过点OOFACF根据勾股定理OA=AC=OA=AC=OC=2,∴△OAC为等边三角形,OFACAF=CF=1,OF=∴“转后距”为(2)∵点,点∴tan∠OPQ=∴当点Px轴负半轴时,∠OPQ=120°,当点Px轴正半轴时,∠OPQ=60°,CB=4-2=2=AC,∠ACO=60°,∴∠CAB=∠ABC=30°,分三种情况,°,当点P在点B右边,PB=t-4,BD>1,BPsin60>1,解得当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,∴∠OEB=180°-∠EPB-∠ABC=180°-60°-30°=90°,PB=4-tPB=2PE>2×1即4-t>2,解得t<2,t=0时,点P与原点O重合,OA′=2,A′Q=2-1=1,t>0,∴0<t<2;当点PB′左边,PB′>1,OB′=OB=4,t<-5;综合t的取值范围为t<-5或0<t<2或【点睛】本题考查图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理,掌握图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理是解题关键.5、(1)见解析;(2)【分析】(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.【详解】(1)如图,DCOA∴∠1+∠3=90°, BD为切线,OBBD∴∠2+∠5=90°, OA=OB∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,DE=DB.(2)如图,作DFABF连接OE,∵DB=DEEF=BE=3,在Rt△DEF中,EF=3,DE=BD=5,DF=∴sin∠DEF== ∵∠AOE,∴∠AOE=∠DEF∴在Rt△AOE中,sin∠AOE=AE=6, AO=.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键. 

    相关试卷

    2020-2021学年第24章 圆综合与测试课时训练:

    这是一份2020-2021学年第24章 圆综合与测试课时训练,共28页。试卷主要包含了等边三角形等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共35页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试巩固练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习,共31页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map