终身会员
搜索
    上传资料 赚现金

    精品试卷沪科版九年级数学下册第24章圆同步练习试卷(精选含详解)

    立即下载
    加入资料篮
    精品试卷沪科版九年级数学下册第24章圆同步练习试卷(精选含详解)第1页
    精品试卷沪科版九年级数学下册第24章圆同步练习试卷(精选含详解)第2页
    精品试卷沪科版九年级数学下册第24章圆同步练习试卷(精选含详解)第3页
    还剩34页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第24章 圆综合与测试同步训练题

    展开

    这是一份数学九年级下册第24章 圆综合与测试同步训练题,共37页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。


    沪科版九年级数学下册第24章圆同步练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、若的圆心角所对的弧长是,则此弧所在圆的半径为(   

    A.1 B.2 C.3 D.4

    2、下列判断正确的个数有(   

    ①直径是圆中最大的弦;

    ②长度相等的两条弧一定是等弧;

    ③半径相等的两个圆是等圆;

    ④弧分优弧和劣弧;

    ⑤同一条弦所对的两条弧一定是等弧.

    A.1个 B.2个 C.3个 D.4个

    3、如图,在RtABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=(  )

    A.10 B.2 C.2 D.4

    4、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点AB的对应点分别为DE,连接AD.当点ADE在同一条直线上时,则∠BAD的大小是(  )

    A.80° B.70° C.60° D.50°

    5、如图图案中,不是中心对称图形的是(   

    A. B. C. D.

    6、如图,在中,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是(   

    A. B. C. D.

    7、如图,点ABC均在⊙O上,连接OAOBACBC,如果OAOB,那么∠C的度数为(   

    A.22.5° B.45° C.90° D.67.5°

    8、的边经过圆心与圆相切于点,若,则的大小等于(   

    A. B. C. D.

    9、已知⊙O的半径为4,,则点A在(     

    A.⊙O B.⊙O C.⊙O D.无法确定

    10、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )

    A.1cm B.2cm C.2cm D.4cm

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是___________.

    2、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________

    3、如图,已知正方形ABCD的边长为6,ECD边上一点,将绕点A旋转至,连接,若,则的长等于______.

    4、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.

    5、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.

    三、解答题(5小题,每小题10分,共计50分)

    1、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接

    (1)如图1,当三点共线时,连接,若,求的长;

    (2)如图2,取的中点,连接,猜想存在的数量关系,并证明你的猜想;

    (3)如图3,在(2)的条件下,连接交于点.若,请直接写出的值.

    2、如图,在中,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BEFE,连接FC并延长交BE于点G

    (1)依题意补全图形;

    (2)求的度数;

    (3)连接GA,用等式表示线段GAGBGC之间的数量关系,并证明.

    3、在平面直角坐标系xOy中,⊙O的半径为1.

    对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦AB′,则称线段AB是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.

    (1)如图,线段CDEFGH中是⊙O的以直线l为对称轴的“反射线段”有      

    (2)已知A点坐标为(0,2),B点坐标为(1,1),

    ①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴ly轴的交点M的坐标.

    ②若将“反射线段”AB沿直线yx的方向向上平移一段距离S,其反射轴ly轴的交点的纵坐标yM的取值范围为yM,求S

    (3)已知点MN是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.

    (4)已知点MN是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴ly轴交点的纵坐标的取值范围.

    4、如图,已知AB是⊙O的直径,⊙OBC的中点D,且

    (1)求证:DE是⊙O的切线;

    (2)若,求的半径.

    5、在中,,过点ABC的垂线AD,垂足为DE为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G

    (1)如图,当点E在线段CD上时,

    ①依题意补全图形,并直接写出BCCF的位置关系;

    ②求证:点GBF的中点.

    (2)直接写出AEBEAG之间的数量关系.

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    先设半径为r,再根据弧长公式建立方程,解出r即可

    【详解】

    设半径为r

    则周长为2πr

    120°所对应的弧长为

    解得r=3

    故选C

    【点睛】

    本题考查弧长计算,牢记弧长公式是本题关键.

    2、B

    【详解】

    ①直径是圆中最大的弦;故①正确,

    ②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确

    ③半径相等的两个圆是等圆;故③正确

    ④弧分优弧、劣弧和半圆,故④不正确

    ⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.

    综上所述,正确的有①③

    故选B

    【点睛】

    本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.

    3、D

    【分析】

    首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在RtB'C'C中利用勾股定理求解.

    【详解】

    解:∵在RtABC中,AB=6,BC=8,

    由旋转性质可知,AB= AB'=6,BC= B'C'=8,

    B'C=10-6=4,

    RtB'C'C中,

    故选:D.

    【点睛】

    本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.

    4、A

    【分析】

    根据三角形旋转得出,根据点ADE在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.

    【详解】

    证明:∵绕点C逆时针旋转得到

    ∴∠ADC=∠DAC

    ∵点ADE在同一条直线上,

    ∴∠DAC=50°,

    ∴∠BAD=∠BAC-∠DAC=80°

    故选A.

    【点睛】

    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.

    5、C

    【分析】

    根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.

    【详解】

    解:A、是中心对称图形,故A选项不合题意;

    B、是中心对称图形,故B选项不合题意;

    C、不是中心对称图形,故C选项符合题意;

    D、是中心对称图形,故D选项不合题意;

    故选:C

    【点睛】

    本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.

    6、C

    【分析】

    过点AACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.

    【详解】

    解:如图,过点AACx轴于点C

    ,则

    解得:

    ∴点

    ∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是

    ∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是

    故选:C

    【点睛】

    本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.

    7、B

    【分析】

    根据同弧所对的圆周角是圆心角的一半即可得.

    【详解】

    解:∵

    故选:B.

    【点睛】

    题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.

    8、A

    【分析】

    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.

    【详解】

    解:连接

    与圆相切于点

    故选:A.

    【点睛】

    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.

    9、C

    【分析】

    根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.

    【详解】

    解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,

    d>r

    ∴点A在⊙O外,

    故选:C.

    【点睛】

    本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔dr;②点P在圆上⇔d=r;③点P在圆内⇔dr

    10、D

    【分析】

    根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.

    【详解】

    解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过

    设半径为r,即OA=OB=AB=r

    OM=OA•sin∠OAB=

    ∵圆O的内接正六边形的面积为(cm2),

    ∴△AOB的面积为(cm2),

    解得r=4,

    故选:D.

    【点睛】

    本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.

    二、填空题

    1、

    【分析】

    根据圆心角为的扇形面积是进行解答即可得.

    【详解】

    解:这个扇形的面积

    故答案是:

    【点睛】

    本题考查了扇形的面积,解题的关键是掌握扇形的面积公式.

    2、    4   

    【分析】

    设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.

    【详解】

    解:设一直角边长为x,另一直角边长为(6-x),

    ∵三角形是直角三角形,

    ∴根据勾股定理

    整理得:

    解得

    这个直角三角形的斜边长为外接圆的直径,

    ∴外接圆的半径为cm,

    三角形面积为

    故答案为

    【点睛】

    本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.

    3、4

    【分析】

    在正方形ABCD中,BE′=DE=2,所以在直角三角形ECE中,EC=8,CE=4,利用勾股定理求得EE′的长即可.

    【详解】

    解:在正方形ABCD中,∠C=90°,

    由旋转得,BE′=DE=2,

    EC=8,CE=4,

    ∴在直角三角形ECE中,

    EE′==4

    故答案为4

    【点睛】

    本题考查了正方形的性质、旋转的性质与勾股定理的知识,正确的利用旋转和正方形的性质得出直角三角形边长并正确的应用勾股定理是解题的关键.

    4、

    【分析】

    设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.

    【详解】

    解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为

    根据题意可得:

    解得:

    故答案是:

    【点睛】

    本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.

    5、18.84

    【分析】

    先根据弧长公式求得πr,然后再运用圆的周长公式解答即可.

    【详解】

    解:设圆弧所在圆的半径为厘米,

    解得

    则它所在圆的周长为(厘米),

    故答案为:

    【点睛】

    本题主要考查了弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键.

    三、解答题

    1、(1);(2);证明见解析;(3)

    【分析】

    (1)过点于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,,勾股定理即可求解;

    (2)延长,使得,连接,过点,交于点,根据平行四边形的性质可得,,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得

    (3)过点于点,过点,连接,交于点,过点,交于点,过点于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值

    【详解】

    (1)过点于点,如图

    绕点顺时针旋转120°,得到

    是等边三角形

    中,

    (2)如图,延长,使得,连接,过点,交于点

    的中点

    四边形是平行四边形

    绕点顺时针旋转120°,得到

    是等边三角形

    是等边三角形

    ,则,

    ,

    是等边三角形

    (3) 如图,过点于点,过点,连接,交于点,过点,交于点,过点于点

    四点共圆

    由(2)可知

    绕点顺时针旋转120°,得到

    的中点,

    的中位线

    是等腰直角三角形

    四边形是矩形

    中,

    ,

    中,

    【点睛】

    本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键.

    2、

    (1)见解析;

    (2)

    (3)

    【分析】

    (1)根据题意补全图形即可;

    (2)根据旋转的性质可得,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明

    (3)过点,证明,进而根据勾股定理以及线段的转换即可得到

    (1)

    如图,

    (2)

    将线段AE绕点A逆时针旋转90°,得到线段AF

    ,

    ,

    (3)

    证明如下,如图,过点

    ,

    【点睛】

    本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.

    3、(1)EF、CD;(2)①;②;(3);(4)

    【分析】

    (1)的半径为1,则的最长的弦长为2,根据两点的距离可得,进而即可求得答案;

    (2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得的坐标;②由①可得当时,yM,设当取得最大值时,过点轴,根据题意,分别为沿直线yx的方向向上平移一段距离S的对应点,则,根据余弦求得进而代入数值列出方程,解方程即可求得的最大值,进而求得的范围;

    (3)根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过的垂线,则即为反射轴,反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线,求得半径为,根据圆的面积公式进行计算即可;

    (4)根据(2)的方法找到所在的圆心,当M点在圆上运动一周时,如图,取的中点的中点,即的中点在以为圆心,半径为的圆上运动,进而即可求得反射轴ly轴交点的纵坐标的取值范围

    【详解】

    (1)的半径为1,则的最长的弦长为2

    根据两点的距离可得

    故符合题意的“反射线段”有EF、CD

    故答案为:EF、CD

    (2)①如图,过点轴于点,连接

    A点坐标为(0,2),B点坐标为(1,1),

    ,且

    的半径为1,

    ,且

    线段AB是⊙O的以直线l为对称轴的“反射线段”,

    ②由①可得当时,yM

    如图,设当取得最大值时,过点轴,根据题意,分别为沿直线yx的方向向上平移一段距离S的对应点,则

    中点,作直线轴于点,则即为反射轴

    yM

    解得(舍)

    (3)

    的半径为1,则是等边三角形,

    根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过的垂线,则即为反射轴,

    反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线

    M点在圆上运动一周时,求反射轴l未经过的区域的面积为

    (4)如图,根据(2)的方法找到所在的圆心,

    ,是等腰直角三角形

    ,

    M点在圆上运动一周时,如图,取的中点的中点

    的中位线

    ,

    的中点在以为圆心,半径为的圆上运动

    MN是⊙O的以直线l为对称轴的“反射线段”,则的切线

    轴交于点

    同理可得

    反射轴ly轴交点的纵坐标的取值范围为

    【点睛】

    本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.

    4、(1)证明见解析;(2)

    【分析】

    (1)连接只要证明即可.此题可运用三角形的中位线定理证,因为,所以

    (2)根据直角三角形中角所对的直角边等于斜边的一半及勾股定理可分别求出的长和的长,即可根据中位线性质求出的长,即的半径长.

    【详解】

    (1)证明:连接

    因为的中点,的中点,

    是圆的半径,

    的切线.

    (2)如图,

    ,且

    的半径长为

    【点睛】

    本题考查了切线的判定、直角三角形中角所对的直角边等于斜边的一半、勾股定理等知识.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证它们垂直即可解决问题.

    5、(1)①BCCF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.

    【分析】

    (1)①如图所示,BCCF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;

    ②根据ADBCBCCF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;

    (2)2AE2=4AG2+BE2,延长BACF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出即可.

    【详解】

    解:(1)①如图所示,BCCF

    ∵将线段AE逆时针旋转90°得到线段AF

    AE=AF,∠EAF=90°,

    ∴∠EAC+∠CAF=90°,

    ∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,

    ∴∠BAE=∠CAF

    在△BAE和△CAF中,

    ∴△BAE≌△CAF(SAS),

    ∴∠ABE=∠ACF=45°,

    ∴∠ECF=∠ACB+∠ACF=45°+45°=90°,

    BCCF

    ②∵ADBCBCCF

    AD∥CF

    ∴∠BDG=∠BCF=90°,∠BGD=∠BFC

    ∴△BDG∽△BCF

    ADBC

    BD=DC=

    BG=GF;

    (2)2AE2=4AG2+BE2.延长BACF延长线于H

    ADBCAB=AC

    AD平分∠BAC

    ∴∠BAD=∠CAD=

    BG=GFAG∥HF

    ∴∠BAG=∠H=45°,∠AGB=∠HFB

    ∴△BAG∽△BHF

    HF=2AG

    ∵∠ACE=45°,

    ∴∠ACE =∠H

    ∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,

    ∴∠EAC=∠FAH

    在△AEC和△AFH中,

    ∴△AEC≌△AFH(AAS),

    EC=FH=2AG

    在Rt△AEF中,根据勾股定理

    在Rt△ECF中,

    【点睛】

    本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.

     

    相关试卷

    沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共29页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试一课一练:

    这是一份沪科版九年级下册第24章 圆综合与测试一课一练,共28页。

    初中数学沪科版九年级下册第24章 圆综合与测试练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共32页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map