沪科版九年级下册第24章 圆综合与测试随堂练习题
展开这是一份沪科版九年级下册第24章 圆综合与测试随堂练习题,共29页。试卷主要包含了下列判断正确的个数有,如图,是的直径,等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<2
2、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3、如图,点A、B、C在上,,则的度数是( )
A.100° B.50° C.40° D.25°
4、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是( )
A.AM=BM B.CM=DM C. D.
5、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是( )
A..等腰三角形 B.等边三角形
C..直角三角形 D..等腰直角三角形
6、下列判断正确的个数有( )
①直径是圆中最大的弦;
②长度相等的两条弧一定是等弧;
③半径相等的两个圆是等圆;
④弧分优弧和劣弧;
⑤同一条弦所对的两条弧一定是等弧.
A.1个 B.2个 C.3个 D.4个
7、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )
A. B. C. D.
8、如图,是的直径,、是上的两点,若,则( )
A.15° B.20° C.25° D.30°
9、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )
A.平移 B.翻折 C.旋转 D.以上三种都不对
10、下列四个图案中,是中心对称图形的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在△ABC中,AB = AC,以AB为直径的圆O交BC边于点D.要使得圆O与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD > AB;④AB < DE < AB.
2、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.
3、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.
4、一个正多边形的中心角是,则这个正多边形的边数为________.
5、如图,在中,,,.绕点B顺时针方向旋转45°得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为______.(结果保留)
三、解答题(5小题,每小题10分,共计50分)
1、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与△PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F.
(1)如图,当点P在线段AB上运动时,若∠DBE=30°,PB=2,求DE的长;
(2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明.
2、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.
(1)图1中的“弦图”的四个直角三角形组成的图形是 对称图形(填“轴”或“中心”).
(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:
①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;
②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.
3、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.
已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.
(1)求弦AC的长.
(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.
(3)当OE=1时,求点A与点D之间的距离(直接写出答案).
4、阅读下列材料,完成相应任务:如图①,是⊙O的内接三角形,是⊙O的直径,平分交⊙O于点,连接,过点作⊙O的切线,交的延长线于点.则.下面是证明的部分过程:
证明:如图②,连接,
是⊙O的直径,,
①________.(1)
为⊙O的切线,,
,(2)
由(1)(2)得,②________________.
平分.
,
③________,
.
任务:
(1)请按照上面的证明思路,补全证明过程:①________,②________,③________;
(2)若,求的长.
5、如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A的对应点分别为E,F.点E落在BA上,连接AF.
(1)若∠BAC=40°,求∠BAF的度数;
(2)若AC=8,BC=6,求AF的长.
-参考答案-
一、单选题
1、A
【分析】
点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.
【详解】
解:∵⊙O的半径为4,点P 在⊙O外部,
∴OP需要满足的条件是OP>4,
故选:A.
【点睛】
此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
2、D
【详解】
解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
.不是轴对称图形,是中心对称图形,故本选项不符合题意;
.是轴对称图形,不是中心对称图形,故本选项不符合题意;
.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、C
【分析】
先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.
【详解】
∵∠ACB=50°,
∴∠AOB=100°,
∵OA=OB,
∴∠OAB=∠OBA= 40°,
故选:C.
【点睛】
本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
4、B
【分析】
根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.
【详解】
解:∵弦AB⊥CD,CD过圆心O,
∴AM=BM,,,
即选项A、C、D选项说法正确,不符合题意,
当根据已知条件得CM和DM不一定相等,
故选B.
【点睛】
本题考查了垂径定理,解题的关键是掌握垂径定理.
5、D
【分析】
根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.
【详解】
解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,
∴∠ECF=90°,CE=CF,
∴△CEF是等腰直角三角形,
故选:D.
【点睛】
本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.
6、B
【详解】
①直径是圆中最大的弦;故①正确,
②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确
③半径相等的两个圆是等圆;故③正确
④弧分优弧、劣弧和半圆,故④不正确
⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.
综上所述,正确的有①③
故选B
【点睛】
本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.
7、C
【分析】
过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.
【详解】
解:如图,过点A作AC⊥x轴于点C,
设 ,则 ,
∵ ,,
∴,
∵, ,
∴ ,
解得: ,
∴ ,
∴ ,
∴点 ,
∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,
∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.
故选:C
【点睛】
本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.
8、C
【分析】
根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.
【详解】
解:∵∠BOC=130°,
∴∠BDC=∠BOC=65°,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠ADC=90°-65°=25°,
故选:C.
【点睛】
本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.
9、C
【详解】
解:根据图形可知,这种图形的运动是旋转而得到的,
故选:C.
【点睛】
本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.
10、A
【分析】
中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.
【详解】
解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,
故选:A.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.
二、填空题
1、②④
【分析】
将所给四个条件逐一判断即可得出结论.
【详解】
解:在中,
①当∠BAC > 60°时,若时,点E与点A重合,不符合题意,故①不满足;
②当∠ABC时,点E与点A重合,不符合题意,当∠ABC时,点E与点O不关于AD对称,当时,点E关于直线AD的对称点在线段OA上,
所以,当45° < ∠ABC < 60°时,点E关于直线AD的对称点在线段OA上,故②满足条件;
③当时,点E关于直线AD的对称点在线段OA上,故③不满足条件;
④当AB < DE < AB时,点E关于直线AD的对称点在线段OA上,故④满足条件;
所以,要使得与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是45° < ∠ABC < 60°或AB < DE < AB
故答案为②④
【点睛】
本题考查了圆周角定理,正确判断出每种情况是解答本题的关键.
2、18.84
【分析】
先根据弧长公式求得πr,然后再运用圆的周长公式解答即可.
【详解】
解:设圆弧所在圆的半径为厘米,
则,
解得,
则它所在圆的周长为(厘米),
故答案为:.
【点睛】
本题主要考查了弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键.
3、或
【分析】
如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.
【详解】
解:如图,连接 (即)分别在优弧与劣弧上,
PM,PN分别与⊙O相切于A,B两点,
故答案为:或
【点睛】
本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.
4、九9
【分析】
根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.
【详解】
解:设这个正多边形的边数为n,
∵这个正多边形的中心角是40°,
∴,
∴,
∴这个正多边形是九边形,
故答案为:九.
【点睛】
本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.
5、##
【分析】
设与AC相交于点D,过点D作,垂足为点E,根据勾股定理逆定理可得为直角三角形,根据三边关系可得,根据题意及等角对等边得出,在中,利用正弦函数可得,结合图形,利用扇形面积公式及三角形面积公式求解即可得.
【详解】
解:设与AC相交于点D,过点D作,垂足为点E,
∵,,,
∴,
∴为直角三角形,
∴,
∵绕点B顺时针方向旋转45°得到,
∴,
∴,
∴,
在中,,
∴,
∴,
∴,
,
,
,
,
故答案为:.
【点睛】
题目主要考查勾股定理逆定理,旋转的性质,等角对等边的性质,正切函数,扇形面积等,理解题意,结合图形,综合运用这些知识点是解题关键.
三、解答题
1、(1) (2)PF=AB-PB或PF=AB+PB,理由见解析
【分析】
(1)根据△PBD等腰直角三角形,PB=2,求出DB的长,由⊙O是△PBD的外接圆,∠DBE=30°,可得答案;
(2)根据同弧所对的圆周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可证△APD≌△FPB,可得答案.
【详解】
解:(1)由题意画以下图,连接EP,
∵△PBD等腰直角三角形,⊙O是△PBD的外接圆,
∴∠DPB=∠DEB=90°,
∵PB=2,
∴ ,
∵∠DBE=30°,
∴
(2)①点P在点A、B之间,
由(1)的图根据同弧所对的圆周角相等,可得:
∠ADP=∠FBP,
又∵△PBD等腰直角三角形,
∴∠DPB=∠APD=90°,DP=BP,
在△APD和△FPB中
∴△APD≌△FPB
∴AP=FP,
∵AP+PB=AB
∴FP+PB=AB,
∴FP=AB-PB,
②点P在点B的右侧,如下图:
∵△PBD等腰直角三角形,
∴∠DPB=∠APF=90°,DP=BP,
∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,
∴∠PBF=∠PDA,
在△APD和△FPB中
∴△APD≌△FPB
∴AP=FP,
∴AB+PB=AP,
∴AB+PB=PF,
∴PF= AB+PB.
综上所述,FP=AB-PB或PF= AB+PB.
【点睛】
本题考查了圆的性质,等腰直角三角形,三角形全等的判定,做题的关键是注意(2)的两种情况.
2、
(1)中心
(2)见解析
【分析】
(1)利用中心对称图形的意义得到答案即可;
(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;
②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.
(1)
图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,
故答案为:中心;
(2)
如图2是轴对称图形而不是中心对称图形;
图3既是轴对称图形,又是中心对称图形.
【点睛】
本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.
3、
(1)8
(2)
(3)或.
【分析】
(1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=AC,由锐角三角函数和勾股定理可求解;
(2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;
(3)分两种情况讨论,由相似三角形和勾股定理可求解.
(1)
如图2,过点O作OH⊥AC于点H,
由垂径定理得:AH=CH=AC,
在Rt△OAH中,,
∴设OH=3x,AH=4x,
∵OH2+AH2=OA2,
∴(3x)2+(4x)2=52,
解得:x=±1,(x=﹣1舍去),
∴OH=3,AH=4,
∴AC=2AH=8;
(2)
如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,
∵∠DEO=∠AEC,
∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;
,
∴∠ACD≠∠DOE
∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,
∴当△DOE与△AEC相似时,∠DOE=∠A,
∴OD∥AC,
∴,
∵OD=OA=5,AC=8,
∴,
∴,
∵∠AGE=∠AHO=90°,
∴GE∥OH,
∴△AEG∽△AOH,
∴,
∴,
∴,
∴,,
在Rt△CEG中,;
(3)
当点E在线段OA上时,如图3,过点E作EG⊥AC于G,过点O作OH⊥AC于H,延长AO交⊙O于M,连接AD,DM,
由(1)可得 OH=3,AH=4,AC=8,
∵OE=1,
∴AE=4,ME=6,
∵EG∥OH,
∴△AEG∽△AOH,
∴,
∴AG=,EG=,
∴GC=,
∴EC===,
∵AM是直径,
∴∠ADM=90°=∠EGC,
又∵∠M=∠C,
∴△EGC∽△ADM,
∴,
∴,
∴AD=2;
当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,
同理可求EG=,AG=,AE=6,GC=,
∴EC===,
∵AM是直径,
∴∠ADM=90°=∠EGC,
又∵∠M=∠C,
∴△EGC∽△ADM,
∴,
∴,
∴AD=,
综上所述:AD的长是或
【点睛】
本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.
4、(1),,;(2)
【分析】
(1)由是⊙O的直径,得到∠ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明;
(2)在直角△ODE中利用勾股定理求解即可.
【详解】
解:(1)如图②,连接,
是⊙O的直径,
,
∠ODB.(1)
为⊙O的切线,
,
,(2)
由(1)(2)得,∠ODA=∠BDE.
平分,
∴.
,
∠ODA,
.
故答案为:① ,② ,③ ;
(2)为的切线,
.
,
,
,
.
在中,
.
【点睛】
本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.
5、
(1)65°
(2)
【分析】
(1)根据三角形的内角和定理得到∠ABC=50°,根据旋转的性质得到∠EBF=∠ABC=50°,AB=BF,根据三角形的内角和定理即可得到结论;
(2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论.
【小题1】
解:在Rt△ABC中,∠C=90°,∠BAC=40°,
∴∠ABC=50°,
∵将△ABC绕着点B逆时针旋转得到△FBE,
∴∠EBF=∠ABC=50°,AB=BF,
∴∠BAF=∠BFA=(180°-50°)=65°;
【小题2】
∵∠C=90°,AC=8,BC=6,
∴AB=10,
∵将△ABC绕着点B逆时针旋转得到△FBE,
∴BE=BC=6,EF=AC=8,
∴AE=AB-BE=10-6=4,
∴AF=.
【点睛】
本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键.
相关试卷
这是一份初中数学第24章 圆综合与测试随堂练习题,共29页。
这是一份2021学年第24章 圆综合与测试巩固练习,共28页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份初中数学第24章 圆综合与测试同步达标检测题,共33页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。